Красота физики. Постигая устройство природы - [11]
Пифагор увлекался пением. Он также заявлял, что действительно слышал Музыку сфер. Некоторые современные ученые строят предположения о том, что исторический Пифагор страдал от тиннитуса, т. е. от шума в ушах. Конечно, с настоящим Пифагором не происходило ничего подобного.
В любом случае более широкий смысл этих открытий состоит в том, что все есть числа и что числа поддерживают гармонию. Пифагорейцы, помешанные на математике, жили в мире, наполненном гармонией.
Послание – в частоте
Я полагаю, что музыкальные правила Пифагора заслуживают того, чтобы считаться первыми количественными законами природы, когда-либо открытыми человеком. (Астрономические закономерности, начиная с регулярной смены дня и ночи, были, конечно, замечены намного раньше. Составление календарей и гороскопов, использование математики для предсказания или воспроизведения имевшего места в прошлом положения Солнца, Луны или планет являлись особыми практическими искусствами задолго до рождения Пифагора. Но эмпирические наблюдения за отдельными объектами весьма отличаются от изучения общих законов Природы.)
Странно поэтому осознавать, что мы до сих пор не понимаем до конца, почему они верны. Сегодня мы намного лучше понимаем физические процессы, связанные с получением, передачей и восприятием звука, но связь между этими знаниями и ощущением «нот, которые звучат хорошо вместе» пока что ускользает от нас. Думаю, по поводу этого существует большое количество многообещающих идей, которые близки к центральному понятию нашей медитации, поскольку (если они верны) проливают свет на важный аспект происхождения нашего чувства красоты.
Наше описание того, как и почему работают правила Пифагора, состоит из трех частей. В первой части звук колеблющейся струны достигает барабанной перепонки в нашем ухе. Во второй – звук, достигший барабанной перепонки, превращается в первичные нервные импульсы. В третьей – первичные нервные импульсы приводят слушателя к ощущению гармонии.
Колебания струны проходят несколько трансформаций, прежде чем достигают нашего мозга как послание. Они воздействуют на окружающий воздух напрямую, просто толкая его. Тем не менее само по себе дрожание отдельной струны достаточно слабое. На практике у музыкального инструмента есть звукоотражающая поверхность – дека, которая в ответ на колебания струны сама вибрирует гораздо сильнее. Движение деки толкает окружающий воздух более чувствительно.
Сотрясение воздуха вокруг струны или деки порождает свое собственное возмущение, которое становится нарастающим: звуковая волна распространяется во всех направлениях. Любая звуковая волна является повторяющимся циклом сжатия и разрежения. Воздух, колеблющийся в каждой точке пространства, оказывает давление на соседние участки, и они тоже начинают колебаться. В конце концов часть этой звуковой волны, пройдя сквозь ухо с его сложной геометрией, неизбежно достигает мембраны, которая называется барабанной перепонкой и находится на глубине нескольких сантиметров в слуховом проходе. Наша барабанная перепонка работает как антипод деки: теперь колебания воздуха вызывают механические движения, а не наоборот.
Колебания барабанной перепонки порождают дальнейшую реакцию, о которой мы сейчас расскажем. Но перед этим мы должны сделать одно простое наблюдение, которое тем не менее является фундаментальным. Может вызвать удивление, как в этот длинном ряду преобразований значимый сигнал, отражающий поведение струны, передается так далеко по цепочке. Дело здесь в том, что во всех этих трансформациях одно свойство сигнала остается неизменным. Число колебаний в единицу времени или, как мы говорим, частота остается одинаковой, независимо от того, была ли это вибрация струны, деки, воздуха или барабанной перепонки – или слуховых косточек, кохлеарной жидкости, базилярной мембраны или волосковых клеток, следующих далее по очереди. Поскольку во время каждой трансформации толчки и натяжения на предыдущей стадии вызывают сжатие и разрежение на следующей, в точном соответствии с изначальным сигналом, то, таким образом, различные виды колебаний оказываются синхронизованными или, как мы говорим, «одновременными». Вследствие этого мы можем ожидать и действительно увидим, что, если мы хотим, чтобы наше восприятие отражало свойства изначальных колебаний, полезно отслеживать частоту тех колебаний, которые в конце концов возникают в наших головах.
Таким образом, первый шаг к пониманию правил Пифагора – это перевод их на язык частот. Сегодня мы можем положиться на уравнения механики, которые позволяют вычислить, как меняется частота колебаний струны, если мы изменим ее длину или натяжение. Используя эти уравнения, мы находим, что частота уменьшается пропорционально длине и возрастает пропорционально квадрату натяжения. Следовательно, оба правила Пифагора, переведенные на язык частот, передают одно и то же простое утверждение. Они гласят, что ноты звучат хорошо вместе, если их частоты соотносятся как небольшие целые числа.
Теория гармонии
Теперь вернемся к тому, что происходит со звуком на второй стадии. Барабанная перепонка крепится к трем маленьким слуховым косточкам, которые, в свою очередь, прикреплены к мембранному «овальному окну», открывающемуся в спиралевидную улитку, которая является критически важным для слуха органом, играющим примерно такую же роль, как глаз для зрения. Она наполнена жидкостью, приходящей в движение от вибрации овального окна. В эту жидкость погружена длинная базилярная мембрана постепенно уменьшающейся толщины, которая, извиваясь, проходит через завитки спиралевидной улитки. Параллельно базилярной мембране пролегает кортиев орган. Именно в нем сигнал от струны наконец – после множества трансформаций – переводится в нервные импульсы. Детальное описание этих преобразований очень сложно и интересует только специалистов, но в целом картина проста и не зависит от этих деталей. Она состоит в том, что частота первоначальных колебаний переводится в серию возбуждений нейронов, имеющую ту же частоту.
Один из лучших популяризаторов науки Фрэнк Вильчек в доступной форме описывает основные составляющие физической реальности — пространство, время, материю, энергию и динамическую сложность. Вы узнаете о теории Большого взрыва и возникновении Вселенной, познакомитесь с одними из крупнейших проектов современности: охотой на частицу Хиггса и поиском гравитационных волн, положивших начало новому виду «многоканальной» астрономии. Книга лауреата Нобелевской премии по физике для всех, кто хочет приблизиться к пониманию устройства Вселенной.
Перед вами — уникальная книга, исследующая подоплеку новейших физических идей о массе, энергии и природе вакуума. Автор, лауреат Нобелевской премии по физике, излагает современные взгляды на нашу невероятную Вселенную и прогнозирует новый золотой век фундаментальной физической науки.Великолепный рассказ о единстве материи и энергии, об элементарных частицах и их взаимодействиях — в этом шедевре серьезной научно-популярной литературы.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.