Космологические коаны. Путешествие в самое сердце физической реальности - [11]

Шрифт
Интервал

высоты 100 локтей, упадет на землю еще до того, как деревянный шар весом один фунт пролетит один локоть. Да и судя по твоему потному лбу, чугунный шар притягивается к Земле гораздо сильнее».

На это ты, все еще тяжело дыша, можешь только кивнуть. А Галилей продолжает: «Но рассуждения Аристотеля ошибочны! Подумай как следует. Чугунный шар также гораздо тяжелее сдвинуть — нужно приложить немалое усилие, даже чтобы катить его по земле».

Пока ты обдумываешь услышанное, он продолжает: «Вот и скажи мне, что перевешивает: большее усилие, необходимое, чтобы сдвинуть чугунный шар, или, наоборот, большее притяжение его к земле? Что пересилит? Какой шар в действительности полетит быстрее? Я совершенно уверен, что на самом деле Аристотель никогда не проверял свое утверждение».

Ты говоришь, что не знаешь. Галилей кивает и дает знак начать эксперимент. Но даже когда ты видишь результат своими глазами, в него нелегко поверить: оба шара ударяются о землю точно в одно и то же время, поднимая далеко внизу облака пыли (хотя и разного размера). Ты поворачиваешься к внимательно наблюдающему за тобой Галилею. «Как такое может быть, — спрашивает он вкрадчиво, — что два таких разных предмета падают совершенно одинаково?»

Я… который проделал этот опыт, могу утверждать, что при падении на землю с высоты в 200 локтей пушечное ядро весом в сто, двести или более фунтов ни на мгновение не опередит мушкетную пулю весом в полфунта.

Галилео в роли Сагредо в «Диалоге о двух главнейших системах мира»[15]

Когда в коане «ОТПЛЫТИЕ» мы размышляли о движении и времени, то решили, что утверждения об абсолютном равномерном движении бессодержательны. А вот относительное движение и изменения движения представляются вполне реальными. Из них, как из кирпичиков, строится поведение нашего физического мира, поскольку оно может быть разложено на мельчайшие движения материи под действием различных сил. Вы толкаете холодильник, и он начинает двигаться, он падает, и вы вместе с ним.

Нам хорошо знакомы эти силы. Мы знаем, что для того, чтобы поднять или передвинуть более массивный (или более «тяжелый») предмет, нужно приложить большую силу (то есть «больше усилий»). Нам также известно, что если в воздухе отпустить предмет, он упадет. У нас имеется достаточно обширный набор интуитивных знаний об этих движениях, которые позволяют нам с легкостью бросать или ловить мячи, уворачиваться от быстро движущихся массивных транспортных средств и т. д. Благодаря тому, что поведение объектов подчиняется строгим и глубоким закономерностям, эти интуитивные навыки помогают нам в повседневной жизни. Интересно, что на протяжении всей своей истории человечество (за редкими исключениями) довольствовалось тем, что использовало эти закономерности в основном интуитивно и довольно ограниченно, особо не подвергая их анализу.

Галилей, вероятно, был первым, кто начал систематически изучать эти закономерности. С помощью ряда гениальных экспериментов, вроде того эксперимента в Пизе (возможно, апокрифического), он показал, что движениями в повседневном физическом мире управляют универсальные, математические законы. Удивительно, но эти основополагающие законы, над которыми стали задумываться тысячи лет назад и разъяснением которых серьезно занимался Галилей, сложились в законченную систему всего за несколько десятилетий, причем завершающим аккордом тут стали работы сэра Исаака Ньютона. Эта система законов получила название механики, и она до сих пор является основой нашего понимания физики. Посмотрим же на эти законы повнимательнее, дабы понять, что именно они говорят об экспериментах Галилея, которые не только заложили фундамент для работ Ньютона, но и явились источником вдохновения для Эйнштейна.

Исходя из наших представлений о положении в пространстве, скорости и инерции, ньютоновскую механику можно очень кратко сформулировать следующим образом: изменение скорости тела со временем, то есть ускорение, равно силе, приложенной к объекту, деленной на инерционную массу[16] тела:

(ускорение) = (сила) / (масса)

или иначе

(ускорение) × (масса) = (сила).

Отсюда немедленно следует, что если к телу не приложена сила, то нет и ускорения, то есть скорость не меняется; значит, если тело двигалось, оно продолжит двигаться с постоянной скоростью, а если покоилось — останется в неподвижном состоянии.

Эти концепции, хотя и довольно точные, в некотором смысле отличаются от их расхожих смыслов, поэтому ради прояснения их значений стоит проделать несколько мысленных экспериментов. Вообразите, например, что вы катите по земле очень большой деревянный шар, который под действием этой силы катится все быстрее и быстрее. Если теперь вы его отпустите, он будет какое-то время катиться с постоянной скоростью, пока другая сила, например, сила трения, не замедлит его движение[17]. Теперь вообразите, что вы точно так же толкнете чугунный шар того же размера. Если вы приложите то же усилие, чугунный шар будет катиться гораздо медленнее, чем деревянный. Действительно, его масса много больше, так что если приложить ту же силу, возникшее ускорение будет много меньше. Теперь допустим, что у вас есть двойник, который, видя ваши мучения с чугунным шаром, приходит вам на помощь. Вы вместе с двойником, прикладывая одинаковые усилия в течение того же времени, что и в предыдущем случае, можете заставить чугунный шар двигаться вдвое быстрее: вы удвоили силу, и, следовательно, ускорение тоже удвоилось.


Рекомендуем почитать
Складки на ткани пространства-времени

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы.


Вернер фон Браун: человек, который продал Луну

Эта книга о потомке немецких баронов и гениальном конструкторе, который создал для Гитлера самое совершенное по тем временам оружие устрашения — баллистическую ракету «Фау-2». Незадолго до поражения Третьего рейха Вернер фон Браун предложил свой талант и знания победителям и дистанцировался от своих бывших товарищей по нацистской партии. Сначала он предложил себя армии США, а затем — НАСА, а свои мечты о космических путешествиях — миллионам американцев. А еще через десяток лет продал своей второй заокеанской родине Луну. Для широкого круга читателей.


История астрономии. Великие открытия с древности до Средневековья

Книга авторитетного британского ученого Джона Дрейера посвящена истории астрономии с древнейших времен до XVII века. Автор прослеживает эволюцию представлений об устройстве Вселенной, начиная с воззрений древних египтян, вавилонян и греков, освещает космологические теории Фалеса, Анаксимандра, Парменида и других греческих натурфилософов, знакомит с учением пифагорейцев и идеями Платона. Дрейер подробно описывает теорию концентрических планетных сфер Евдокса и Калиппа и геоцентрическую систему мироздания Птолемея.


Когда у Земли было две Луны. Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба

В 1959 г. советская станция «Луна-3» сделала первые фотографии обратной стороны Луны. Даже в плохом разрешении изображения ошеломили ученых: обратная сторона выглядела как огромное пространство горных массивов, а не как обширные лавовые равнины, покрывающие видимую с Земли сторону. Последующие миссии качественными снимками подтвердили это открытие. Почему Луна выглядит именно так и может ли это что то сказать о нашем месте во Вселенной? Оказывается, может – и довольно много. В книге «Когда у Земли было две Луны» известный планетолог Эрик Асфог отправляет нас в захватывающее путешествие в самые далекие времена нашей Галактики, чтобы выяснить, почему Луна такая разная.


Красная луна. Советское покорение космоса

В период холодной войны США и СССР, сдерживаемые страхом перед ядерной катастрофой, превратили опасное противостояние в уникальное соперничество за небо – поэтапную гонку, условным финишем которой стала высадка человека на Луну. 20 июля 1969 года американцы первыми достигли финишной ленты. Но многие ли помнят, что на старте именно Советский Союз неожиданно вырвался вперед и, приводя весь мир в волнение и трепет, удерживал лидерство почти до конца гонки? Начиная с новаторских идей Константина Эдуардовича Циолковского, обосновавшего возможность космических полетов, Массимо Капаччоли в живой и захватывающей манере рассказывает обо всех этапах космической гонки, уделяя особое внимание роли СССР.


Белые карлики. Будущее Вселенной

Перед вами первая книга на русском языке, почти целиком посвященная остывающим реликтам звезд, известным под именем белых карликов. А ведь судьба превратиться в таких обитателей космического пространства ждет почти все звезды, кроме самых массивных. История открытия белых карликов и их изучение насчитывает десятилетия, и автор не только подробно описывает их физическую природу и во многом парадоксальные свойства, но и рассказывает об ученых, посвятивших жизнь этим объектам Большого космоса. Кроме информации о сверхновых звездах и космологических проблемах, связанных с белыми карликами, читатель познакомится с историей радиоастрономии, узнает об открытии пульсаров и квазаров, о первом детектировании, происхождении и свойствах микроволнового реликтового излучения и его роли в исследовании Вселенной.