Коллайдер - [76]
Это как если бы несколько свидетелей преступления давали противоречивые показания. Один бы сказал: «Преступник был одет в длинный серый плащ», а второй убеждал бы следователя: «Нет, на нем была синяя куртка». И только потом криминалист догадался бы, что всему виной игра света и тени, которая и изменила внешность злодея. Из-за тени, отбрасываемой навесом под определенным углом, куртка визуально потемнела и удлинилась. Так и дуальности, подаренные нам мембранной теорией, помогли понять, что, меняя точку зрения, все пять вариантов теории струн можно сводить один к другому.
В 1995 г. на конференции, проходившей на юге Калифорнии, ведущий специалист по теории струн Эд Виттен торжественно заявил об открытии «дуальности дуальностей», позволяющей описать весь струнный ассортимент в рамках единой схемы, которую он назвал М-теорией. Расшифровывать этот термин Виттен отказался и вопрос о его значении оставил открытым. Например, буква «М», считал он, может означать «магическая», «матричная» или «мистическая». Остальным тут же в голову пришли «мембраны» и «мать всех теорий». На волне эйфории, вызванной этим заявлением, и чувствуя, что теория струн вот-вот приобретет законченную форму, теоретики окрестили столь эпохальное событие второй струнной революцией. (Первая случилась в 80-х, когда стало ясно, что в теории струн отсутствуют математические аномалии).
Один из свободных параметров объединенной теории струн - это размер так называемых больших дополнительных измерений (размерностей). В этой иерархии различают несколько типов измерений. Во-первых, это три пространственных измерения - длина, ширина и высота, которые вместе с временной координатой образуют четырехмерное пространство-время. Во-вторых, есть маленькие «компактифицированные» измерения (впервые о них заговорил шведский физик Оскар Кляйн), свернутые в крепкие узелки, настолько крошечные, что наши приборы их не в состоянии заметить. Как показали Виттен и другие, эти размерности могут образовывать 6-мерные конфигурации, названные по имени математиков Эудженио Калаби и Шин-Тун Яу пространствами Калаби-Яу. Наконец, имеется одиннадцатое измерение, размер которого предстоит определить. Дело в том, что благодаря дуальностям оно может разбухать, как заведенное на хороших дрожжах тесто. Именно на эту большую «лишнюю» координату мы, возможно, наткнемся в эксперименте.
Как же представить себе дополнительное измерение, отходящее под прямым углом к обычному миру? Наверное, это сродни попыткам рассказать о полете на воздушном шаре людям, которые никогда не отрывались от земли. До изобретения аэростата никто не видел землю с высоты птичьего полета. Но с приходом заполняемых горячим газом шаров, а потом и самолетов с космическими ракетами мы гораздо больше узнали о третьем измерении - высоте. Если одиннадцатое измерение существует и оно не свернуто, то что нам мешает в него выйти? Как уверены некоторые теоретики, причина тому - «клейкость» струн, из которых состоят вещество и излучение.
Одно из ключевых положений М-теории основано на понятии браны Дирихле, или просто D-браны. Эту идею в соавторстве с Цзинь Даем и Робертом Леем развивал теоретик Джозеф Полчински из Калифорнийского университета в Санта-Барбаре, предложивший рассматривать протяженные объекты, к которым могли бы крепиться открытые струны. Открытые струны - это струны, у которых концы не смыкаются, а висят свободно, как у спагетти. Их антипод - замкнутые струны, представляющие собой петли наподобие колец лука. Полчински с соавторами показал, что открытым струнам свойственно цепляться за D-браны, словно их концы смазаны клеем. Замкнутые струны лишены такой возможности.
В теории струн кварки, лептоны, фотоны и большинство других частиц являются состояниями открытых струн. В качестве исключения можно назвать гравитоны, представленные замкнутыми струнами. Таким образом, все частицы, не считая гравитонов, беспрепятственно прилипают к D-бранам. Гравитонам, в свою очередь, ничто не мешает оставить насиженное место на одной D-бране и устремиться перелетными птицами к другой.
Благодаря отличию струнной сущности гравитонов от остальных частиц в М-теории удалось смоделировать относительную слабость гравитационного взаимодействия и тем самым решить упомянутую выше проблему иерархии. В 1998 г. физики из Стэнфордского университета Нима Аркани-Хамед, Савас Димопулос и Джиа Двали, которых для этой работы свел вместе Игнациус Антониадас, обрисовали схему, включающую две D-браны, разделенные большим - около 1 мм - дополнительным измерением. Вторая D-брана в модели АДД (по инициалам авторов) играет роль параллельной вселенной или некой области нашей Вселенной. Она расположена прямо у нас перед носом, но совершенно невидима. Поскольку все поля Стандартной модели привязаны к нашей собственной бране, фотоны не в состоянии перепрыгнуть через пропасть и осветить параллельную брану. Из сильного и слабого взаимодействий тоже шпионов не выйдет - они и представления не имеют о спрятанном под боком мире. Единственный шанс на него наткнуться дают невидимые гравитационные нити.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.