Коллайдер - [75]

Шрифт
Интервал

Три года спустя советский космолог Андрей Линде связал инфляцию с концепцией Многомира в рамках единой модели так называемой хаотической инфляции. По версии Линде, Многомир представляет собой инкубатор, в котором обретаются зародыши бесчисленных дочерних вселенных. Эти зародыши бросает скалярное поле (наподобие поля Хиггса, но с большей амплитудой), которое случайно меняется от точки к точке и в каждой области пространства устанавливает свое значение вакуумной энергии. Подчиняясь общей теории относительности, ставящей геометрию в зависимость от массы и энергии, участки с самым плотным вакуумом начинают разрастаться быстрее всех. Ни для кого не секрет, что изобилие рабочих мест приводит к стремительному росту местного населения. Так же как закатанные в асфальт пригороды вытесняют хиреющие деревни, самые быстро расширяющиеся части Вселенной - инфляционные области - вмиг залавливают все остальное. Вывод Линде состоит в том, что мы живем в одном из таких распухших мегаполисов, а другие области загнаны «под ковер», откуда их никакими приборами не достать.

Решение проблемы однородности наблюдаемой Вселенной, предложенное инфляцией, многим пришлось по душе. Ей не нужно человечество, чтобы объяснить, как бурлящий хаос первозданной Вселенной приобрел консистенцию манной каши. В этом одно из основных преимуществ инфляции перед антропным принципом. Однако, вытолкав, в прямом смысле, сестер нашей Вселенной за пределы зрения приборов, инфляция почти лишила нас возможности ее проверить. К счастью, она предсказывает, что материя и энергия после стадии стремительного расширения должны быть распределены во Вселенной определенным образом. Этот характерный рисунок проявляется в карте реликтового излучения, построенной WMAP и другими спутниками. В последнее время астрофизики пришли, в общем-то, к единому мнению. Да, в общих чертах космическая инфляция дает более-менее правдоподобное описание ранних стадий развития Вселенной. Но в какой форме она протекала и чем была вызвана, предстоит еще выяснить.

Недавно выведенная разновидность теории параллельных вселенных, гипотеза мира на бране, имеет дело не с закрытыми комнатами нашего собственного пространства, а с измерениями, дополняющими привычную для нас тройку. Согласно этой глубокой идее, обычное пространство представляет собой трехмерную мембрану (коротко, просто «брану»), плавающую в полноразмерном мире, так называемом контейнере. Гипотеза состоит в том, что контейнер не впускает в себя никакие частицы, кроме гравитонов. А раз переносчики электрослабого и сильного взаимодействий не могут пуститься в свободное плавание, существование контейнера сказывается только на гравитационных процессах. Следовательно, если фотон не способен выйти в контейнер, мы последний и не увидим. А силы тяготения контейнер подтачивает: гравитоны уходят с браны и распыляются в нем. Это объясняет, почему гравитация гораздо слабее всех остальных сил.

Концепция браны является логическим продолжением теории струн. Только вместо струны, напоминающей извивающийся жгут для банги-джампинга, в ней фигурируют пульсирующие тела двух, трех и более измерений, наподобие гибких трамплинов или дрожащих капель дождя. Эти объекты могут иметь самые разные размеры: от крошечных (тогда мы будем их воспринимать как элементарные частицы) до настолько огромных, что в них поместится все наблюдаемое нами пространство. Отсюда недалеко до идеи о том, что все, кроме гравитонов, живет на бране.

Браны в качестве модели элементарных частиц обсуждаются уже не одно десятилетие. Еще в 60-х гг. Дирак высказал мысль, что частицы могут быть не точечными, а протяженными объектами. Однако он не стал развивать эту идею, и она прошла как-то мимо физического сообщества. В 1986 г. техасские ученые Джеймс Хьюз, Цзюнь Лю и Джозеф Полчински впервые построили суперсимметричную теорию мембран, в которой показывалось, как с помощью этих объектов можно моделировать различные типы частиц. Год спустя Пол Таунсхенд из Кембриджского университета ввел в теоретическую физику термин «р-брана». Им он обозначил образования высших размерностей, населяющие 11-мерный мир, - своего рода капли воды замысловатой формы, плавающие в обширной и неспокойной атмосфере. (Буква «р» говорит, сколько измерений у самой мембраны).

Примерно в то же время Таунсхенд, его коллега Майкл Дафф и другие теоретики обнаружили глубокие связи между струнами и мембранами, получившие названия дуальностей. Дуальность - это, грубо говоря, математическое тождество двух случаев, когда в уравнениях пару значений некоторой переменной меняют местами. Например, при прочих равных физических условиях вместо микроскопически малого радиуса подставляют большой. Это как в карточных играх: если какая-то масть объявлена козырной, то вытащенная из колоды «маленькая» карта приобретает значительный вес и дает игроку шанс, побив даже тузы других мастей, выйти победителем. Аналогично в мембранной теории: подстановка вместо больших значений маленьких помогает доказать определенные тождества.

На мембранную теорию физическое сообщество почти не обращало внимания вплоть до середины 90-х гг. прошлого века. Но потом группа теоретиков обнаружила набор дуальностей, с помощью которого удавалось свести воедино все пять разновидностей теории струн. Когда в начале 80-х струнная теория начала серьезно претендовать на звание теории всего сущего, оказалось, что ее формулировка - при соблюдении всех разумных требований - допускает разночтения: по научной терминологии это типы I, IIa, IIb, а также гетеротические теории струн О и Е-типа. Физики только недоуменно разводили руками, ведь теория всего сущего должна быть одна. Как выбрать из этих версий ту самую?


Еще от автора Пол Хэлперн
Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.