Коллайдер - [23]

Шрифт
Интервал

.

Между тем на другом берегу Ла-Манша открытие радиоактивного распада подвергло сомнению господствовавшие представления о неделимости атома. В 1896 г. парижский физик Анри Беккерель посыпал урановыми солями обернутую черной бумагой фотопластинку и был немало удивлен, когда увидел, что со временем пластинка темнеет, а значит, от солей идут какие-то загадочные лучи. В отличие от рентгеновских, они у Беккереля появлялись сами по себе без всяких электрических приборов. Ученый обнаружил, что излучение шло от любых урансодержащих соединений. Причем чем больше в соединении было урана, тем больше оно излучало. Логично было предположить, что это излучают сами атомы урана.

Работавшая в Париже Мария Склодовская-Кюри - физик польского происхождения - повторила опыты Беккереля, а также вместе со своим мужем Пьером нашла загадочное излучение у двух открытых ими элементов: радия и полония. Последние излучали даже интенсивней, чем уран, а количество их со временем уменьшалось. Марии принадлежит термин «радиоактивность», которым она обозначила явление самопроизвольного распада атомов, высвобождающих при этом особое излучение. За свое эпохальное открытие недолговечности атомов в радиоактивных процессах Беккерель и супруги Кюри удостоились в 1903 г. Нобелевской премии. Вневременные элементы Дальтона, безраздельно властвовавшие в науке в течение века, пришли в движение.

Резерфорд следил за этими событиями с большим интересом. Пока его учитель Томсон был занят открытием электрона, Резерфорд обратил свое пристальное внимание на то, что радиоактивными материалами можно ионизовать газы. Почему-то лучи, шедшие от урана и остальных радиоактивных соединений, выводили газ из состояния электрической инертности и превращали его в электрически активный проводник. Радиоактивное излучение вело себя как две палочки, которые натирают друг об друга, чтобы получить искру.

Но самое главное, радиоактивность высекла искру интереса в Резерфорде и заставила его заняться методичным исследованием ее свойств, которому было суждено перевернуть наши представления о физике. А новичку, начинавшему со сборки радиоприемников и других электромагнитных приборов, предстояло, набравшись опыта, превратиться в экспериментатора высочайшего класса, способного с помощью радиоактивного излучения совершить путешествие в мир атома. Зная, что магнитное поле отклоняет разноименные заряды в разные стороны, Резерфорд понял, что в радиоактивных лучах есть положительная и отрицательная компоненты. Им он дал имена, соответственно, альфа и бета-излучение. (Бета-частицы оказались просто-напросто электронами, а в скором времени резерфордовскую классификацию продолжил Виллар, открывший третью, электрически нейтральную компоненту - гамма-лучи.) В магнитном поле альфа-частицы закручиваются в одну сторону, а бета - в другую, как лошади, бегущие по цирковой арене в разные стороны. Резерфорд смотрел, насколько сильно каждый тип излучения задерживается препятствием, и доказал, что бета-лучи проникают глубже, чем альфа. Следовательно, альфа-частицы по размерам больше бета-частиц.

В 1898 г. в разгар своих исследований радиоактивности Резерфорд решил взять передышку, чтобы уладить дела сердечные. Он ненадолго уехал в Новую Зеландию, где женился на своей школьной возлюбленной Мэри Ньютон. Однако в Англию они не вернулись. У женатого мужчины должен быть хороший доход, заключил Резерфорд и согласился на место профессора в университете Макгилла в Монреале, Канада, с жалованием в 500 фунтов стерлингов в год - приличные деньги по тем временам, около 50 000 долларов в сегодняшнем эквиваленте. Счастливая пара отплыла в холодный край, где ученый вскоре продолжил свои исследования.

В Макгилле Резерфорд пуще прежнего стремился сорвать с альфа-частиц маску и рассмотреть их истинное лицо. Повторив опыты Томсона по определению отношения заряда к массе с альфа-лучами вместо электронов, он вдруг увидел, что заряд у альфа-частиц такой же, как у ионов гелия. Закрадывалось подозрение, что самый тяжелый продукт радиоактивного распада - это на самом деле путешествующий инкогнито гелий.

Как раз тогда, когда Резерфорду не помешала бы помощь в разгадке атомных тайн, в городе появился еще один следопыт. В 1900 г. Фредерик Содди (1877-1956), химик из английского Суссекса, получил в университете Макгилла место. Узнав про эксперименты Резерфорда, он захотел внести свою лепту, и они вместе принялись изучать явление радиоактивности. Они выдвинули гипотезу, что радиоактивные атомы, такие как уран, радий и торий, распадаются на более простые атомы других химических элементов, высвобождая при этом альфа-частицы. Увлекавшийся историей Средневековья Содди догадался, что радиоактивные превращения являются в некотором смысле воплощением заветной мечты алхимиков, пытавшихся получить из неблагородных металлов золото.

В 1903 г., вскоре после того, как Резерфорд опубликовал их совместную теорию радиоактивных превращений, Содди решил объединить свои усилия с Уильямом Рамзаем из Университетского колледжа в Лондоне, признанным экспертом по гелию и инертным газам вообще (неону и остальным). Рамзай с Содди поставили серию тщательных экспериментов, в которых альфа-частицы от радиоактивного радия накапливались в специальной стеклянной трубке. Затем у полученного достаточно плотного газа ученые исследовали спектральные линии, оказавшиеся в точности такими же, как и у гелия. Спектральные линии - это узкие полоски в окрестности определенных частот (в видимой части спектра это определенные цвета). Каждый элемент, излучая или поглощая свет, дает свой набор линий. В спектре излучения гелия всегда видны некоторые фиолетовые, желтые, зеленые, сине-зеленые и красные линии, а также две характерные голубоватые полоски. Эти «отпечатки пальцев» послужили в опытах Рамзая и Содди неопровержимым доказательством того, что альфа-частицы и ионизованный гелий - одно лицо.


Еще от автора Пол Хэлперн
Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.