Коллайдер - [14]
Да, у света, который диктуют уравнения Максвелла, мало общего с ньютоновскими корпускулами. Электромагнитное излучение, скорее, должно стоять рядом с такими волновыми явлениями, как сейсмические толчки, морские волны и звук. Все эти колебания распространяются по какой-либо материальной среде. Возникает законный вопрос: по какой среде бежит свет? Разве он может бежать по абсолютному вакууму?
Многие ученые XIX столетия думали, что все пространство заполняет неуловимая субстанция под названием эфир, по которой, как по трубам, идут световые колебания. А значит, если измерять скорость света в разных направлениях, она должна меняться вместе с направлением эфирного ветра. Знаменитый эксперимент американских физиков Альберта Майкельсона и Эдварда Морли 1887 г. зарубил эту гипотезу на корню. Однако научному миру было по-прежнему трудно понять, как это свет может лететь в чистейшей пустоте, особенно если учесть почти полную аналогию с волнами в материальных средах.
Факт постоянства скорости света заставил задаться еще одним важным вопросом. В мысленном эксперименте, который много раз проигрывал молодой Альберт Эйнштейн (1879-1955), он пытался представить, что произойдет, если бежать наперегонки со световой волной и «сесть» на нее? Тогда она застынет, как выхваченный фарами из темноты олень? Или, по-другому, измерим ли мы в таком случае нулевую скорость света? Ньютоновская механика отвечает на этот вопрос положительно: если два тела двигаются с одинаковыми скоростями, друг другу они будут казаться покоящимися. В уравнениях Максвелла тем не менее нет никакого намека на скорость наблюдателя. Свет пролетает с одной и той же скоростью, подгоняемый неразрывной связью между электрическими и магнитными колебаниями. На решение этого кажущегося парадокса молодой Эйнштейн потратил немало творческих сил.
Его специальная теория относительности, опубликованная в 1905 г., сняла этот вопрос. Эйнштейн добавил в ньютоновскую механику множители, которые приводили к растяжению временных промежутков и укорочению расстояний для экспериментатора, движущегося почти со скоростью света. Эти два эффекта, известные соответственно как замедление времени и сокращение длины, так друг друга компенсируют, что все наблюдатели меряют одну и ту же скорость света. Как ни удивительно, но они в сущности заставляют нас приписать наблюдателям, летящим с разными скоростями, разный ход времени и разные измеряемые длины. Эту цену, Эйнштейн понимал, он должен заплатить, чтобы согласовать уравнения Максвелла и физику движущихся тел.
Отталкиваясь от нового подхода к измерению расстояний, времени и скорости, Эйнштейн вынужден был расширить и другие понятия физики Ньютона. Например, понятие массы, в которое он включил не только массу покоя, но и релятивистскую массу. Масса покоя характеризует количество содержащейся в теле материи. Эту массу можно поменять, только добавив или убрав часть материала, в то время как релятивистская масса зависит от скорости тела.[7] Покоящийся в начале кусок материи обладает только массой покоя, но, по мере того как его скорость растет, его релятивистская масса становится все больше. Эйнштейн пришел к выводу, что полную энергию тела можно приравнять к его релятивистской массе, умноженной на скорость света в квадрате. Из его знаменитой формулы Е = тс >2 следовало, что при определенных условиях энергия и масса, подобно воде и льду, могут переходить друг в друга.
Второй вопрос, на который Эйнштейн направил свой легендарный ум, звучал так: энергия светового луча зависит исключительно от его яркости, или свое влияние оказывает также и частота? Классическая теория волновых процессов связывает их энергию с величиной колебаний. Волны с крутыми горбами несут больше энергии, чем волны с пологим профилем. Скажем, чем крепче ударишь по барабану, тем более сильные колебания возбудишь, тем громче и энергичней будет звук. Громкость характеризует интенсивность звука и зависит от высоты, или амплитуды, звуковых волн. Так и яркость говорит об интенсивности света и точно таким же образом соотносится с амплитудой световых волн.
Тело, которое поглощает весь падающий на него свет, называется черным телом. Стоит взять черное тело, например в виде ящика (подойдет картонная упаковка от салфеток, обернутая черной бумагой), и нагреть его, как оно начнет излучать. Если предположить, что это электромагнитное излучение всевозможных частот, и попытаться посчитать, сколько излучается на каждой частоте, возникает серьезное препятствие. Как известно, в одну упаковку входит больше сложенных салфеток, чем несложенных. Такая же история с колебаниями: в ящике помещается больше коротковолновых колебаний, нежели длинноволновых. Следовательно, вычисления, основанные на классической теории волн, предсказывают, что львиную долю энергии захватят короткие волны, в то время как длинноволновые моды будут довольствоваться жалкими крохами. Другими словами, из ящика в изобилии будут выходить коротковолновые волны высокой частоты: ультрафиолетовое и более жесткое излучение. Такой сценарий, называемый ультрафиолетовой катастрофой, конечно, не имеет места. Иначе получилось бы вот что: едва вы поставили бы на стол горячий темный контейнер для еды, как он мгновенно превратился бы в солярий, излучающий ультрафиолет, а в придачу небезопасные рентгеновские и даже смертельные гамма-лучи. Так что предположение, что свет ведет себя как классическая волна, приводит к летальному исходу!
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.