Коллайдер - [15]
В 1900 г. немецкий физик Макс Планк придумал математическое решение парадокса черного тела. Взамен классической картины, в которой энергия волны меняется пропорционально ее яркости, он предложил считать, что световая энергия приходит в виде отдельных порций, квантов («квантум» по-гречески «порция»). Причем энергия в каждом кванте пропорциональна частоте. Коэффициент пропорциональности сегодня называется постоянной Планка. Идея Планка, фактически означавшая перераспределение энергии в низкие частоты, позволяла избежать ультрафиолетовой катастрофы.
Пять лет спустя Эйнштейн применил эту идею о квантах к явлению, получившему название фотоэлектрического эффекта, или просто фотоэффекта. Фотоэффект имеет место, когда свет падает на металл, выбивая из последнего электроны (отрицательно заряженные частицы). Эйнштейн показал, что световую энергию электроны получают в виде отдельных квантов. То есть свет иногда ведет себя как частица, а не как волна. Эта теория стала одним из первых робких шагов к полной квантовой теории материи и энергии. Специальную теорию относительности, работы по фотоэффекту и эквивалентности массы и энергии - все это Эйнштейн опубликовал в 1905 г., который стал для него, как говорят, «годом чудес»[8].
Вскоре русско-немецкий математик Герман Минковский придал специальной теории относительности изящную форму. Приняв время за четвертое измерение, вдобавок к пространственным (длине, ширине и высоте), он заметил, что запись теории Эйнштейна значительно упрощается. Положив конец розни между пространством и временем, Минковский провозгласил рождение четырехмерного «пространства-времени».
Эйнштейн быстро понял, что новоиспеченное пространство-время может сослужить хорошую службу при создании новой теории гравитации. Хотя Эйнштейн признавал успехи ньютоновской теории всемирного тяготения, ему хотелось объяснить гравитацию в чисто локальных терминах, в терминах геометрии самого пространства-времени. Взяв за основу факт независимости ускорения свободного падения от массы тела, Эйнштейн сформулировал так называемый принцип эквивалентности, который гласит: покоящиеся и свободно падающие системы отсчета физически неразличимы. От этой отправной точки он пришел к тому, что соотнес между собой гравитационные эффекты в заданной области пространства-времени с геометрией этой области. Материя, предположил Эйнштейн, прогибает пространство-время, и это искривление заставляет тела двигаться по изогнутым траекториям. Например, Солнце исказило пространство-время вокруг себя, поэтому Земле не остается ничего иного, как двигаться по эллиптической орбите. Получается, источником силы тяготения являются не эфемерные канаты, а кривизна пространства-времени. Свое элегантное объяснение сил тяготения - общую теорию относительности - Эйнштейн опубликовал в 1915 г.
Проиллюстрируем общерелятивистскую связь между материей и искривлениями пространства на простом примере. Представим себе пространство-время в виде матраса. Если на нем ничего не лежит, поверхность идеально ровная. Тут приползает ленивец и решает на этом матрасе прикорнуть. Когда он ложится, матрас под ним проседает. Поэтому, если у ленивца с собой есть еще детеныш, из-за неровной поверхности отпрыск будет скатываться к своему родителю. Так же и Солнце прогибает «матрас» пространства-времени в Солнечной системе, и все планеты, оказавшиеся поблизости, неизбежно двигаются по искривленным орбитам.
У общей теории относительности есть еще одно удивительное свойство - она проливает свет на происхождение Вселенной. Вкупе с астрономическими наблюдениями она предсказывает, что у времени было начало, причем в этот момент космос находился в невероятно горячем и плотном состоянии. За миллиарды лет пространство расширилось и из крошечной области превратилось в огромный контейнер, вмещающий в себя свыше миллиарда галактик, от миллиардов до сотен миллиардов звезд в каждой.[9]
Эйнштейн не ожидал, что его теория вместо статической даст расширяющуюся Вселенную. Подставив в свои уравнения более-менее разумное распределение материи, он с удивлением увидел, что получающаяся геометрия оказывается неустойчивой: начинает расширяться или сжиматься от малейшего толчка. Так карточный домик рассыпается от любого ветерка. Что-то не то, подумал Эйнштейн, уверенный в неподвижности космоса в больших масштабах. Чтобы спасти свою теорию от неустойчивых решений, он добавил в уравнение дополнительное слагаемое, космологическую постоянную (или лямбда-член). Она могла служить своего рода «антигравитацией», не дающей материи скучиваться на больших масштабах.
Пришел 1929 г., год неожиданного открытия американского астронома Эдвина Хаббла. Из наблюдений, проведенных в обсерватории Маунт-Вильсон в Южной Калифорнии, следовало, что все остальные галактики во Вселенной, кроме разве что самых близких к Млечному Пути, от нас удаляются. То есть мы воочию видим расширение пространства. Обратив этот процесс назад в прошлое, ученые пришли к потрясающему выводу: когда-то Вселенная была гораздо меньше, чем сейчас. Эту гипотезу окрестили гипотезой Большого взрыва.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.