Когда у Земли было две Луны. Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба - [26]

Шрифт
Интервал

.

Любые, кроме водорода и гелия, элементы, которые обнаруживаются внутри звезды (или галактики, или молекулярного облака, или чего-то еще), астрономы называют металлами. Они говорят о металличности звезд – это понятие отражает, как много полезных материалов доступно там для создания землеподобных планет[103]. То, что любой элемент тяжелее водорода и гелия называется металлом, связано с тем, что при спектроскопии Солнца и соседних звезд легко вычислить соотношение содержания железа и водорода. Звезды кажутся голубыми, красными, желтыми или имеющими какие-то промежуточные оттенки, но, если в фокус телескопа поместить спектрометр – то есть по сути очень совершенную призму, – вы увидите целый лес узких темных промежутков, которые называются спектральными линиями поглощения. Они были открыты Сесилией Пейн-Гапошкиной и другими астрономами в 1920-е гг. и сообщают нам об обилии внутри звезды тех или иных элементов, поскольку возникают, когда атомы поглощают волны определенной длины из непрерывного спектра фотонов, которые пытаются вырваться из глубоких слоев звезды. Если непрерывный спектр можно сравнить с нотами, издаваемыми тромбоном, то линии поглощения блокируют волны определенной длины, создавая свой тембр для каждого элемента.


Компактное, полное пыли молекулярное облако Барнард 68 протяженностью в половину светового года и массой примерно вдвое больше массы Солнца. Оно находится на пороге гравитационного коллапса и через сотню тысяч лет превратится в одну или несколько звезд.

FORS/VLT/ESO


Чем четче линии поглощения, тем больше концентрация данного атома в фотосфере. В предположении, что солнечное вещество хорошо перемешано, в его состав по массе входит 73,9 % водорода, 24,7 % гелия и 1,4 % других элементов, в основном кислорода (1 %) и углерода (0,3 %). Нам известна концентрация еще десятков элементов, а всего их там обнаружено более 60. Если внести поправку на атомную массу, мы получим, что более 90 % атомов Солнца – это атомы водорода; аналогичным образом, соотношение числа атомов С и О составляет 0,55[104].

Химический состав примитивных метеоритов близок к составу Солнца. Если на одной оси откладывать средние содержания элементов, обнаруженных на Солнце, а на другой – элементов, найденные путем масс-спектрометрического анализа таких примитивных метеоритов, как Альенде и Оргей, то в итоге получится более-менее прямая линия. Если не учитывать газы и другие элементы, которых в метеоритах просто не может быть, то соответствие будет один к одному (то есть состав идентичен) с несколькими резко отличающимися значениями. Каждый такой выпадающий элемент вместе со своими изотопами сообщает нам нечто важное и о происхождении метеоритов, и о том, как звезды обзавелись планетами.

Если водород и гелий (H, He) – строительный материал для звезд, а кремний, магний, железо и кислород (Si, Mg, Fe, O) – основные компоненты каменистых планет, то углерод, водород, кислород, азот (C, H, O, N) и понемногу еще нескольких других элементов составляют любую пригодную для жизни среду. Поэтому теперь мы сосредоточимся на углероде и кислороде, третьем и четвертом по распространенности элементах во Вселенной. Оба являются типичными продуктами идущего внутри звезд термоядерного синтеза, в частности так называемого CNO-цикла. Возможно, что углерод производят все звезды, а кислород – преимущественно взорвавшиеся на первом этапе гиганты; если это так, то соотношение углерода и кислорода во Вселенной в целом растет. Но сейчас звезды вокруг нас обычно содержат примерно в два раза меньше атомов углерода, чем кислорода. Такое же соотношение характерно и для Солнца.

При таком соотношении, когда гигантское газовое облако остывает, H и H становятся H>2 (самая распространенная молекула), C и O превращаются в СО (самое распространенное соединение), а затем появляются CO>2, CH>4, NH>3, HCN и все прочие CHON-штуки, которые в конце концов конденсируются во льды. После завершения этих реакций основная часть углерода уже израсходована, но остается много свободного кислорода. Как уже говорилось во введении, кислород создает характерные для землеподобных планет оксиды. Один из таких оксидов – вода (H>2O), второе по распространенности соединение во Вселенной. Далее идут минералы, которые составляют кору и мантию землеподобных планет, такие как кварц (SiO>2), оливин ((Mg, Fe)>2SiO>4) и тому подобное. Мы называем их силикатами, но важнейший элемент в их составе – это кислород, а не кремний (Si), потому что, как это ни странно, образование силикатов ограничено доступностью именно кислорода. Когда кислород кончается, прекращается образование и горных пород, и воды.

Кислород – ключ ко всем этим земным активам. Но что происходит вокруг тех немногих звезд[105], в которых соотношение С и О гораздо выше? Настоящая катастрофа! В таком случае углерод связывает в молекулы СО и СО>2весь кислород. В условиях изобилия свободного углерода и отсутствия свободного кислорода, необходимого, чтобы появились горные породы и вода, из чего же сделаны их планеты? Планеты-гиганты по-прежнему будут состоять из газообразных водорода и гелия, но под черными графитовыми облаками, из которых льются алмазные дожди. «Каменистые» планеты выглядят там еще более странно. Вместо силикатов там будут карбиды, карбонаты и твердый углерод, а вместо воды – углеводороды, такие как метан и пропан (CH


Рекомендуем почитать
Пурпурный. Как один человек изобрел цвет, изменивший мир

Это история об Уильяме Перкине, который случайно изобрел пурпурный цвет. И навсегда изменил мир вокруг себя. До 1856 года красители были исключительно натуральными – их получали из насекомых, моллюсков, корней и листьев, а искусственное окрашивание было кропотливым и дорогим. Но в 1856 году все изменилось. Английский химик, работая над лекарством от малярии в своей домашней лаборатории, случайно открыл способ массового производства красителей на фабриках. Этот эксперимент – или даже ошибка – произвел революцию в моде, химии и промышленности. Эта книга – удивительный рассказ о том, как иногда даже самая маленькая вещь может менять и иметь такое продолжительное и важное воздействие. В формате PDF A4 сохранён издательский дизайн.


Политика России в Центрально-Восточной Европе (первая треть ХХ века): геополитический аспект

100-летие спустя после окончания Первой мировой войны и начала становления Версальской системы предыстория и история этих событий требуют дальнейшего исследования. Тема книги актуальна и в связи с территориальными изменениями в Центрально-Восточной Европе (ЦВЕ) в конце ХХ века. Многие сегодняшние проблемы берут начало в геополитической трансформации региона в ходе Первой мировой войны и после ее окончания. Концептуальной новизной работы является попытка проследить возвращение имперской составляющей во внешнюю политику России.


Реникса

Эта книга в основном о научных методах исследования.Применение их в естествознании способствовало невиданному его успеху. В науках же, изучающих духовную жизнь людей, эти методы только начинают внедряться и, естественно, сталкиваются с рядом трудностей.В книге показано, каков характер этих трудностей, как научное знание борется с легковерием, пустословием, лжеучениями и как забвение научного подхода к исследованиям тех или иных явлений открывает дорогу всевозможным «чудесам» к которым, в частности, можно отнести и телепатию.


Затаенное имя - Тайнопись в 'Слове о полку Игореве'

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


`Тук-тук-тук` - и никого!

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Алфавитно-предметный указатель к систематическому каталогу

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.