Когда у Земли было две Луны. Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба - [24]
Наблюдать звезды в инфракрасном диапазоне непросто. Трудность состоит в том, что мы живем внутри атмосферного покрывала Земли, нас затопляет его тепловая энергия и мы должны смотреть через эту пелену. Тогда как основные составляющие атмосферы азот (N>2) и кислород (O>2) по большей части прозрачны для инфракрасного излучения, вода (H>2O) эффективно поглощает такие лучи, как и углекислый газ (CO>2), и метан (CH>4). Более того, земля вокруг телескопа теплая; теплым остается и купол, и сам астроном, и воздух; все это сияет инфракрасным излучением (именно за счет этого работают камеры ночного видения). Сам детектор нужно охладить до температуры жидкого азота, чтобы он стал достаточно темным в инфракрасном диапазоне и смог зафиксировать хоть что-то. Из-за всех этих сложностей, а также из-за того, что надежные инфракрасные астрономические приборы не существовали почти до самого конца прошлого века, мы четко и однозначно обнаружили теплые диски вокруг звезд только в 1980-х гг.[96] Это дало основания для осторожного оптимизма, что вскоре будут открыты системы экзопланет.
Высотные обсерватории, такие как Комплекс инфракрасного телескопа NASA (Infrared Telescope Facility, IRTF) на вершине вулкана Мауна-Кеа на Гавайях, позволяют нам выглядывать наружу через атмосферные окна в непрерывном излучении – длины волн, где вода и углекислый газ в какой-то мере прозрачны для инфракрасных лучей. Конечно, лучше всего заниматься инфракрасными наблюдениями в космосе, высоко над теплой, поглощающей излучение атмосферой и подальше от крупных излучающих объектов. Для этого был создан космический телескоп «Джеймс Уэбб» стоимостью 10 млрд долларов, который будет запущен в космос в 2021 г. Это инфракрасный телескоп со складываемым зеркалом диаметром 6,5 м, имеющий чувствительность от видимой области спектра до волн длиной 28,5 микрометра. Чтобы выполнять свою работу, телескоп должен выйти на орбиту в 1,5 млн километров от сияющей теплом Земли.
С теми же затратами можно было построить на Земле телескоп видимого диапазона с зеркалом в пять раз больше, использующий современные технологии адаптивной оптики, чтобы все изображение получалось в фокусе. Разрешение было бы в пять раз лучше, чувствительность в сто раз выше, комплекс было бы куда легче обслуживать, а данные передавались бы по проводам. Но в таком случае все равно не удалось бы увидеть формирующиеся планеты, потому что они заметны только в инфракрасном свете. Отдельные полосы поглощения в инфракрасном диапазоне также расскажут о химии образующейся планеты, то есть, заглядывая вперед, о том, каким будет состав ее почвы и атмосферы. Та же самая чувствительность к поглощению молекулами воды и углекислого газа в земной атмосфере, которая делает инфракрасные наблюдения такими сложными, делает их и очень ценными.
Первоначально заветной мечтой исследователей молодых звезд было сфотографировать планету, находящуюся на стадии формирования. Теперь это уже сделано для нескольких соседних планет, массивных горячих тел в глубине комковатого диска. Большой атакамский миллиметровый комплекс (Atacama Large Millimeter Array, ALMA) состоит из десятков отдельных телескопов с зеркалами диаметром от семи до двенадцати метров (размером с бассейн на заднем дворе). Эти телескопы установлены на мобильных платформах и занимают несколько квадратных километров на пустынном высокогорье в северном Чили[97]. На снимках ALMA отчетливо видны вложенные одно в другое кольца вокруг звезд, щели в дисках и другие структуры, которые указывают на присутствие обращающихся вокруг звезды массивных планет, разгоняющих газ и пыль по отдельным полосам. Аналогичный снимок землеподобной планеты – дело отдаленного будущего. Возможно, для этого потребуется еще несколько десятков лет и целая флотилия космических телескопов, расположенных на обширном участке космоса в виде напоминающей ALMA формации с большими расстояниями между устройствами.
Доказательства существования экзопланет появились еще в 1990-е и в основном базируются на двух популярных методах. Первый – обнаружение трудноуловимого гравитационного влияния, которое массивная планета оказывает на свою звезду. Любой из очень распространенных «горячих Юпитеров» – небесных тел, равных по массе Юпитеру, но обращающихся по орбите ниже Меркурия, – заставляет свою звезду совершать небольшие круговые движения с частотой в несколько недель или месяцев. Когда звезда обращается вокруг такого «барицентра», она в течение полугода приближается к наблюдателю, а в следующие полгода удаляется (имеется в виду, разумеется, планетный год). В ее излучении появляется небольшое периодическое красное/синее смещение, напоминающее красное смещение галактик, только намного, намного, намного слабее. Иначе говоря, эти вихляния звезды становятся причиной небольшого доплеровского сдвига спектральных линий, который могут зафиксировать только наиболее чувствительные методы измерения[98]. Это дает нам лучевую скорость звезды, потому что мы замеряем скорость ее движения либо к нам, либо от нас и вычитаем из этого значения скорость орбитального движения Земли вокруг Солнца в момент наблюдения.
Это история об Уильяме Перкине, который случайно изобрел пурпурный цвет. И навсегда изменил мир вокруг себя. До 1856 года красители были исключительно натуральными – их получали из насекомых, моллюсков, корней и листьев, а искусственное окрашивание было кропотливым и дорогим. Но в 1856 году все изменилось. Английский химик, работая над лекарством от малярии в своей домашней лаборатории, случайно открыл способ массового производства красителей на фабриках. Этот эксперимент – или даже ошибка – произвел революцию в моде, химии и промышленности. Эта книга – удивительный рассказ о том, как иногда даже самая маленькая вещь может менять и иметь такое продолжительное и важное воздействие. В формате PDF A4 сохранён издательский дизайн.
В издании изложены основные действия по оказанию помощи пострадавшим на воде. Дана характеристика видов утопления, способов выполнения искусственного дыхания, непрямого массажа сердца и мер по предупреждению несчастных случаев.Предназначено для широкого круга читателей, а также может быть использовано инструкторами, методистами, работающими с детьми и взрослыми в условиях, связанных с водной средой.
Обширные районы нынешнего шельфа Охотского, Берингова, Черного и многих других морей были еще шесть — десять тысяч лет назад сушей, на которой обитали люди. На шельфе же находятся и руины затонувших городов и поселений, ушедших под воду не только в эпоху античности и средневековья, но и в Новое время. Об этих реальных, а не гипотетических «атлантидах» и рассказывает заключительная книга трилогии, посвященной «новым атлантидам».
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.