Кентерберийские головоломки - [47]
165. Доска, разбитая на отсеки. Нельзя разбить обычную шахматную доску на 4 равных квадратных отсека и описать конем полное турне или даже только путь в каждом из них. Однако, разделив доску на 4 части, как это показано на рисунке (две части по 12 клеток, а две другие – по 20), можно получить интересную головоломку. Вам предлагается проделать полное турне на этой доске, начав с любой клетки, но переходя из одного отсека в другой не прежде, чем посетив все клетки данного отсека и сделав последний ход конем в исходную клетку. Это сделать нетрудно, но головоломка окажется весьма занимательной и небесполезной.
Возможно ли «турне» или полный «путь» коня на прямоугольной доске заданных размеров, зависит не только от размеров доски, но и от ее формы. Турне, очевидно, невозможно на доске, содержащей нечетное число ячеек, такой, как 5×5 или 7X7, и вот почему. Каждый последовательный скачок коня должен совершаться с белой клетки на черную и с черной на белую поочередно. Но если число клеток, или ячеек, нечетно, то число клеток одного цвета на 1 больше числа клеток другого цвета. Следовательно, путь должен начинаться с клетки того цвета, которого больше, и заканчиваться тем же цветом, а поскольку ход конем между клетками одинакового цвета невозможен, то путь не может быть возвратным. Однако правильное турне можно совершить на прямоугольной доске любых размеров, содержащей четное число клеток, если число клеток на одной ее стороне не меньше 6, а на другой – не меньше 5. Другими словами, наименьшей прямоугольной доской, на которой возможно турне, будет доска 6×5.
Полный путь коня (не возвратный) по всем клеткам доски невозможен на доске, у которой размер одной из сторон равен всего лишь 2 клеткам, а также на квадратной доске меньше 5×5. Так что на доске 4×4 мы не сможем совершить конем ни турне, ни даже полного пути; одну клетку придется оставить непосещенной. И все же на доске 4×3, содержащей на 4 клетки меньше, полный путь удается совершить 16 различными способами. Читатель, быть может, захочет отыскать их сам. Каждый путь, начинающийся или заканчивающийся на других клетках, здесь считается другим решением, так же как и путь, получающийся с помощью поворота.
166. Турне четырех коней. Я повторяю, что если разбить шахматную доску на 4 равные части, как показано на рисунке жирными линиями, то на одной из частей невозможно осуществить турне коня.
На рисунке вы видите лучшую из попыток такого турне, при которой конь дважды вынужден выйти за пределы своего участка. Попробуйте разбить доску на 4 части одинаковых размеров и формы так, чтобы на каждой из них оказалось возможным осуществить турне коня. Разрезы вдоль пунктирных линий не подходят, ибо тогда 4 центральные клетки оказались бы отделены либо просто висели бы на ниточке.
167. Кубическое турне коня. Несколько лет назад я где-то прочитал, что Абни Вандермонд, известный математик, который родился в 1736 г., а умер в 1793 г., большое внимание уделял турне коня. Я не уверен относительно точных результатов его исследований, но один момент привлек мое внимание: он поставил вопрос о турне коня на шести гранях куба, каждая из которых представляет собой шахматную доску. Нашел ли он решение или нет, я не знаю, но я нигде не встречал опубликованного решения, а поэтому сразу же сел за изучение этой интересной задачи. Может быть, читатель захочет ею заняться?
168. Четыре лягушки. На рисунке показано восемь грибков, на 1-м и 3-м из них сидят белые лягушки, а на 6-м и 8-м – черные.
Головоломка состоит в том, чтобы, передвигая за один раз по одной лягушке в любом порядке вдоль прямых линий от одного грибка до другого, поменять лягушек местами, то есть черные лягушки должны занять грибки 1 и 3, а белые – 6 и 8. Воспользовавшись четырьмя шашками и приведенной схемой, вы найдете эту задачу совсем простой, но несколько труднее будет сделать это за 7 перемещений, где любое число последовательных ходов одной лягушки считается одним перемещением. Разумеется, на одном грибке одновременно может сидеть лишь одна лягушка.
169. Головоломка мандарина. Следующая головоломка обладает особой пикантностью, так как ее правильное решение позволило одному молодому китайцу добиться руки своей возлюбленной. Хи-Чум-Чоп был богатейшим мандарином во всей округе на сотню миль от Пекина, не счесть было числа поклонников его прекрасной дочери Пики-Бо. Самым пылким из них оказался Винки-Хи. Когда он попросил у старого мандарина руки его дочери, тот предложил ему головоломку, пообещав свое согласие, если юноша принесет ему правильный ответ в течение недели. Винки-Хи, следуя обычаю, принятому среди некоторых любителей головоломок и до сего дня, предложил головоломку всем своим друзьям, а затем, сравнив решения, лучшее выдал за собственное. Мандарин выполнил свое обещание. Для свадебного пира был заколот откормленный щенок, и когда Хи-Чум-Чоп передал Винки-Хи, согласно китайскому обычаю, кусок печенки, то гости расценили это как пожелание вечного благополучия.
У мандарина был стол, разделенный на 25 квадратов, как показано на рисунке. На каждом из 24 квадратов находилась шашка с номером, это показано на рисунке. Головоломка состоит в том, чтобы расставить шашки в правильном порядке, передвигая по одной шашке за один раз способом, который мы называем ходом коня. Шашку
Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.
Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.
Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…
«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)
Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Тим Глинн-Джонс — автор этой необычной книги — знает о цифрах все. Вы убедитесь в этом, прочитав его занимательные истории «от нуля до бесконечности». С их помощью вы перестанете опасаться числа 13, разберетесь, какую страшную тайну хранит в себе число 666, узнаете, чем отличается американский миллиард от европейского и почему такие понятия как Время, Вселенная и Смерть, можно определить только через бесконечность.