Кентерберийские головоломки - [29]

Шрифт
Интервал

Далее, вопрос состоит в том, следует ли вам для того, чтобы выиграть, первому переворачивать карту или вежливо предоставить это право вашему противнику? Как вам следует играть? Быть может, читатель скажет:

– О, это довольно легко. Вы должны начинать игру и перевернуть 3; затем, чтобы ни делал ваш противник, он не сможет помешать вам набрать 10, 17, 24 и выиграть 31. Вам следует лишь придерживаться этих цифр, чтобы выиграть.

Но это лишь полузнание, которое столь опасно, что отдаст вас прямо в руки шулеру.

Вы играете 3, а шулер играет 4 и говорит: «Семь»: вы играете 3 и считаете: «Десять»; шулер переворачивает 3 и считает «Тринадцать»; вы играете 4 и считаете: «Семнадцать»; шулер играет 4 и считает: «Двадцать один»; вы играете 3 и говорите свое: «Двадцать четыре».

Теперь шулер переворачивает последнее 4 и считает: «Двадцать восемь». Вы ищете 3, но тщетно – все они уже перевернуты! Так что вам остается либо позволить противнику сказать: «Тридцать одно», либо самому превзойти эту цифру; в любом случае вы проиграли.

Таким образом, вы видите, что ваш метод безусловного выигрыша полностью терпит крах из-за того, что может быть названо «методом истощения». Я дал вам ключ к этой игре, показав, как вы можете всегда выиграть; однако я не скажу здесь, должны ли вы играть первым или вторым – это вы должны определить еами.


80. Железные дороги. На рисунке показан план китайского города, защищенного пятиугольной стеной. Некогда пять европейских держав добивались концессии на строительство здесь железной дороги, и наконец один из наимудрейших советников императора сказал:

– Пусть каждая из них получит концессию!



Естественно, после этого чиновникам Поднебесной ничего не оставалось, как уточнить детали. Буквами на плане обозначены места входа каждой дороги в город и расположение соответствующих станций. По достигнутому соглашению ни одна линия не должна была пересекать линий других компаний. В попытках заинтересованных сторон найти решение проблемы было потеряно столько времени, что произошли изменения в китайском правительстве и весь план провалился. Возьмите карандаш и начертите пути от А до А, от В до В, от С до С и т. д. так, чтобы они не пересекались друг с другом и со станциями других компаний.


81. Восемь клоунов. На рисунке показана группа клоунов, которую мне довелось однажды видеть. У каждого клоуна на костюме было изображено одно из чисел от 1 до 9. После обычных шуток, прибауток и всевозможных кривляний они закончили свое выступление небольшими числовыми трюками. Одним из них было быстрое построение нескольких магических квадратов. Мне пришло в голову, что если бы клоун 1 не появился (что и произошло на рисунке), то этот последний трюк оказалось бы не так-то легко выполнить.



Читателю предлагается определить, каким образом должны перестроиться эти восемь клоунов, дабы образовать квадрат (одно место пустое) так, чтобы сумма вдоль каждой вертикали, горизонтали и каждой из двух диагоналей была одинакова. Пустое место может находиться в любом месте квадрата, но отсутствует клоун именно с номером 1.


82. Арифметика чародея. Некогда один рыцарь пошел за советом к знаменитому чародею. Речь шла о сердечных делах; но после того, как маг предсказал благоприятный исход и приготовил любовное зелье, которое несомненно должно было помочь его посетителю, разговор перешел на оккультные темы.

– А знаком ли ты также и с магией чисел? – спросил рыцарь. – Покажи мне какой-нибудь пример твоего умения в подобных делах.



Старый чародей взял пять брусков с изображенными на них числами и поставил их на полку, очевидно, в случайном порядке, так что их расположение оказалось следующим: 41096, как показано на рисунке. Затем он взял в руки бруски с цифрами 8 и 3 так, что получилось число 83.

– Сэр рыцарь, ответь мне, – сказал чародей, – сможешь ли ты умножить одно число на другое в уме?

– По правде говоря, нет, – ответил храбрый рыцарь. – Мне нужны перо и пергамент.

– И все же обрати внимание, сколь это просто для человека, искушенного в тайнах далекой Аравии, который постиг всю магию, заключенную в философии чисел!

Чародей просто поместил 3 на полке слева от 4, а 8 – на противоположном конце. При атом получился правильный ответ 3 410968. Удивительно, не правда ли? Сколько других двузначных множителей, обладающих аналогичным свойством, сумеете вы назвать? Вы можете ставить на полку сколько угодно брусков и выбирать любые числа, какие пожелаете.


83. Задача с ленточкой. Если мы возьмем изображенную на рисунке ленточку за концы и распрямим ее, то получим число 0588235294117647. Это число обладает той особенностью, что, умножив его на любое из чисел 2, 3, 4, 5, 6, 7, 8 или 9, вы получите по кругу то же самое число, начинающееся в другом месте.



Например, умножив его на 4, мы получим в произведении число 2352941176470588, начинающееся с места, отмеченного стрелкой. Если же мы умножим его на 3, то получим тот же самый результат, только начинающийся с места, отмеченного звездочкой. Далее, головоломка состоит в том, чтобы изменив расположение цифр на ленточке, добиться того же результата, только 0 и 7 на концах ленточки нельзя перемещать на другие места.


Еще от автора Генри Эрнест Дьюдени
200 знаменитых головоломок мира

Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.


Пятьсот двадцать головоломок

Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.


Рекомендуем почитать
Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.