Кентерберийские головоломки - [30]

Шрифт
Интервал


84. Японки и ковер. Трем знатным японкам достался в наследство квадратный ковер, очень дорогой, но еще более ценимый как семейная реликвия. Они решили его разрезать и сделать из него три квадратных коврика так, чтобы каждая могла унести равную долю в свой дом.

Одна дама предложила простейший способ: взять себе меньшую, чем у двух остальных, долю, чтобы разрезать ковер не более чем на четыре части.



Существуют три простых способа сделать это, и я оставляю читателю приятную возможность их отыскать. Скажу лишь, что если ковер имеет площадь в девять квадратных футов, то одной даме достанется квадратный коврик в два квадратных фута, второй – два квадратных фута в двух кусках, а третьей – кусок в один квадратный фут.

Но это щедрое предложение не было принято другими двумя сестрами, которые настаивали, чтобы каждая получила квадратный коврик одинакового с остальными размера.

Тогда, по мнению западных авторитетов, им придется разрезать ковер на семь частей; но читатель из Токио уверяет меня, что существует легенда, согласно которой им удалось это сделать с шестью частями, и он хотел бы знать, возможно ли это.

Да, возможно.

Сумеете ли вы вырезать шесть частей, из которых удастся сложить три квадратных коврика одинаковых размеров?


85. Капитан Лонгбау и медведи. Этот знаменитый и довольно правдивый путешественник затаил великую обиду на публику. Капитан Лонгбау утверждает, что во время недавней экспедиции в Арктику он в самом деле достиг Северного полюса, но не смог заставить никого поверить в это. Разумеется, самое трудное в подобных случаях – веские доказательства, но он обещает, что будущие путешественники, которым удастся совершить тот же подвиг, смогут убедиться непосредственно. Капитан говорит, что, добравшись до полюса, он увидел там медведя, который непрестанно ходил вокруг места, где (как настаивает капитан) конец земной оси действительно торчит из земли; медведь был, очевидно, озадачен тем странным фактом, что в каком бы направлении он ни смотрел, оказывалось, что он всегда смотрит на юг. Капитан Лонгбау положил конец его размышлениям, застрелив зверя и насадив его на земную ось (как показано на рисунке) в качестве свидетельства для будущих путешественников, о которых я уже упоминал.

Когда капитан на обратном пути преодолел сто миль к югу, с ним произошел один несколько головоломный случай. Однажды утром с вершины тороса он, к своему удивлению, заметил в непосредственной близости от себя ни много ни мало – одиннадцать медведей. Но более всего его поразило то обстоятельство, что они располагались так, что оказалось семь рядов по четыре медведя в каждом. Было ли это чистой случайностью, он сказать не мог, но такая вещь могла произойти. Если читатель попытается отметить на листе бумаги одиннадцать точек так, чтобы они образовали семь рядов, по четыре точки в каждом, то он встретится с определенными трудностями; однако расположение, упомянутое капитаном, вполне возможно. Можете ли вы его определить?



86. Путешествие по Англии. В этой головоломке речь пойдет о железных дорогах, и в наши дни интенсивных путешествий она может оказаться полезной. Человек, проживающий в городе А (верхняя часть карты), решил посетить каждый город ровно по одному разу и закончить путешествие в Z, что нетрудно было бы сделать, если бы он мог пользоваться не только железными, но и шоссейными дорогами, однако это исключено. Как ему удастся выполнить свое намерение? Возьмите карандаш и, начиная с Л, двигайтесь от города к городу, отмечая точками города, которые вы уже посетили, и посмотрите, удастся ли вам закончить путешествие в Z.



87. Головоломка Чифу-Чемульпо: Вот головоломка, которую в свое время можно было видеть на прилавках лондонских магазинов и которую вы видите на рисунке. Она состоит в том, чтобы восемь вагонов расставить в обратном порядке (8, 7, 6, 5, 4, 3, 2, 1 вместо 1, 2, 3, 4, 5, 6, 7, 8), а паровоз при этом остался на боковом пути, как и вначале. Сделайте это за наименьшее число шагов.



Каждое передвижение паровоза или вагона с главного на боковой путь или наоборот считается за шаг, ибо вагон или паровоз проходит при этом через одну из стрелок. Передвижения вдоль главного пути не учитываются. При том расположении, которое указано на рисунке, вы можете передвинуть 7 на боковой путь, приблизить 8 к 6 и вернуть 7 снова на славный путь. Одновременно на боковом пути могут находиться пять вагонов или четыре вагона и паровоз. Вагоны движутся без помощи паровоза. Покупателю предлагалось «попытаться сделать это за 20 шагов». А сколько шагов потребуется вам?


88. Эксцентричная торговка. Миссис Коуви, что содержит небольшую птицеферму в Сери, – одна из самых эксцентричных женщин, какую я когда-либо встречал. Ее манера вести дела всегда оригинальна, но порой она повергает вас в совершенное недоумение. Однажды она объясняла нескольким своим ближайшим друзьям, как она распорядилась дневным поступлением яиц. Очевидно, идею миссис Коуви почерпнула из хорошо известной старой головоломки, но, поскольку она прибегла к усовершенствованию, я, не колеблясь, представляю головоломку читателям.


Еще от автора Генри Эрнест Дьюдени
200 знаменитых головоломок мира

Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.


Пятьсот двадцать головоломок

Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.


Рекомендуем почитать
Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.