Кентерберийские головоломки - [28]

Шрифт
Интервал

Таким образом, у нас есть все 64 клетки шахматной доски, а головоломка состоит в том, чтобы вырезать эти части и сложить затем из них правильную шахматную доску. Части легко можно вырезать из бумаги в клеточку, и если их наклеить на картон, то они могут служить в доме источником постоянного развлечения.

Если вам удастся сложить шахматную доску, но вы не зафиксируете расположение на бумаге, то в следующий раз повторить ту же процедуру вам будет так же нелегко. Сам принц Генри при всей своей ловкости и образованности нашел бы это занятие весьма занимательным.


75. Паук и муха. Внутри прямоугольной комнаты, имеющей 30 футов в длину и по 12 футов в ширину и высоту, на середине одной из торцовых стен в 1 футе от потолка сидит паук (точка А). Муха сидит на середине противоположной стены в 1 футе от пола (точка В).



Каково кратчайшее расстояние, каким паук может добраться до неподвижной мухи? Разумеется, паук никогда не падает и не использует для передвижения паутины.


76. Озадаченный келарь. Вот небольшая головоломка, возникшая, согласно преданий) в одном из старых монастырей на западе Англии. Аббат Френсис был, видимо, весьма достойным человеком, а его справедливые методы управления распространялись даже на те небольшие акты благотворительности, которыми он славился по всей округе.

Кроме того, аббат отлично разбирался в винах. Как-то раз он послал за келарем и пожаловался, что некая бутылка ему не по вкусу.



– Молю тебя, брат Джон, скажи мне, сколько у тебя бутылок этого вина?

– Добрая дюжина больших бутылей, отец мой, и столько же малых, – ответил келарь, – и по пять бутылок из каждой дюжины выпито в трапезной.

– Так. У ворот дожидаются трое простолюдинов. Передай им эти две дюжины бутылок, как полных, так и пустых, и присмотри за тем, чтобы каждый получил по справедливости; ни один не должен получить больше вина, чем другой, и не должно быть разницы в бутылках.

Бедный Джон, прихватив дожидавшихся, спустился в погреб, но тут-то он и призадумался. У него было семь больших и семь малых полных бутылок и пять больших и пять малых – пустых (вы видите их на рисунке). Как келарю следовало все это разделить поровну?

Он разделил бутылки на три группы несколькими способами, которые на первый взгляд казались вполне справедливыми, ибо две малые бутылки содержали ровно столько же вина, сколько и одна большая. Но сама по себе пустая большая бутылка не стоила двух малых, а аббат распорядился, чтобы каждый человек унес такое же число бутылок каждого размера, как и двое остальных.

В конце концов келарь прибегнул к помощи одного монаха, который слыл весьма сообразительным, и тот сумел показать ему, как нужно действовать. А можете ли вы найти нужный способ?


77. Флаг. Хорошую задачу на разрезание, где приходится иметь дело лишь с двумя частями, можно встретить довольно редко, так что, быть может, эта головоломка заинтересует читателя. На рисунке показан кусок материи, который требуется разрезать на две части (без потерь), чтобы сложить из них квадратные флаг с четырьмя симметрично расположенными розами.



Это было бы довольно легко сделать, если бы не было четвертой розы, поскольку мы могли бы просто провести разрез от А до В и приставить полученный кусок снизу. Но проводить разрез через розу не разрешается, в чем и состоит основная трудность головоломки. Разумеется, части нельзя переворачивать обратной стороной кверху.


78. Ловля свиней. Вы видите на рисунке Хендрика и Катрюн, занятых захватывающим видом спорта – ловлей свиней.

Почему это им не удалось?

Как ни странно, но ответ на этот вопрос дает следующая небольшая игра-головоломка.



Воспроизведите помещенный здесь чертеж на достаточно большом куске картона или бумаги, а вместо датчанина, его жены и двух свиней используйте четыре фишки. В начале игры фишки следует поместить в указанные квадраты. Один игрок представляет Хендрика и Катрюн, а другой – свиней. Первый игрок передвигает датчанина и его жену на один квадрат каждого в любом направлении, но не по диагонали, а затем второй игрок передвигает обеих свиней тоже на один квадрат каждую, но не по диагонали. Игроки делают это по очереди до тех пор, пока Хендрик не схватит одну свинью, а Катрюн – другую.

Поймать животных окажется до смешного простым, если первыми будут двигаться свиньи, но датские свиньи не имеют такой привычки.


79. Игра в «тридцать одно». Некогда (а, возможно, и по сей день) эта игра была излюбленным средством мошенничества для всякого рода шулеров, которые увлекали в нее непосвященных на ипподромах и в поездах. Однако поскольку сама по себе она очень интересна, я не стану извиняться, представляя ее моим читателям.

Шулер выкладывает 24 карты, как показано на рисунке, и предлагает ничего не подозревающему пассажиру попытать счастья, определив, кто из них скорее насчитает 31 или заставит противника превысить эту цифру. Делается это следующим образом.



Один игрок переворачивает карту, скажем 2, и считает: «Два», второй игрок переворачивает карту, скажем 5, и, добавляя эту цифру к сумме, говорит: «Семь»; первый игрок переворачивает другую карту, скажем 1, и считает: «Восемь»; и т. д. по очереди, пока один из них не скажет: «Тридцать одно», и тем самым не выиграет.


Еще от автора Генри Эрнест Дьюдени
200 знаменитых головоломок мира

Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.


Пятьсот двадцать головоломок

Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.


Рекомендуем почитать
Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.