Кара небесная. Космическое миропонимание - [69]
Солнце принадлежит к первому типу звёздного населения. Формирование Солнечной системы было вызвано взрывом его поверхности. Это предположение основано, в частности, на том, что в веществе Солнечной системы содержится аномально большая доля золота и урана, которые могли бы быть результатом эндотермических реакций, вызванных этим взрывом. Первородная энергия Солнца – основной источник энергии на Земле. Его мощность характеризуется солнечной постоянной – количеством энергии, проходящей через площадку единичной площади, перпендикулярную солнечным лучам. На расстоянии в одну астрономическую единицу (то есть на орбите Земли) эта постоянная равна приблизительно 1,37 кВт/м². Земля проходит через точку афелия в начале июля и удаляется от Солнца на расстояние 152 миллионов километров, а через точку перигелия – в начале января и приближается к Солнцу на расстояние 147 миллионов километров. Поскольку разница в расстоянии составляет примерно 5 миллионов километров, то в афелии Земля получает примерно на 7 % меньше тепла. Зимы в северном полушарии немного теплее, чем в южном, а лето немного прохладнее.
Солнце – магнитоактивная звезда. Она обладает сильным магнитным полем, напряжённость которого меняется со временем и которое меняет направление приблизительно каждые 11 лет, во время солнечного максимума. Вариации магнитного поля Солнца вызывают разнообразные эффекты, совокупность которых называется солнечной активностью. По этой причине возникают солнечные пятна, солнечные вспышки, вариации солнечного ветра и т. д. На Земле при этом возникают полярные сияния в высоких и средних широтах и геомагнитные бури, которые негативно сказываются на работе средств связи, средств передачи электроэнергии, а также негативно воздействует на живые организмы (вызывают головную боль и плохое самочувствие у людей, чувствительных к магнитным бурям). Несомненно, что солнечная активность играла большую роль в формировании и развитии Солнечной системы. Текущий возраст Солнца, оценённый с помощью компьютерных моделей звёздной эволюции, равен приблизительно 4,57 миллиардов лет.
Центральная часть Солнца с радиусом примерно 150—175 тысяч километров, в которой идут термоядерные реакции от первородной энергии, называется солнечным ядром. Плотность вещества в ядре составляет примерно 150 000 кг/м³, а температура в центре ядра – более 14 миллионов градусов кельвина. Анализ данных показал, что в ядре скорость вращения первородной энергии вокруг своей оси приближается к бесконечности. В ядре осуществляется протон-протонная термоядерная реакция, в результате которой из четырёх протонов образуется гелий-4. При этом каждую секунду в излучение превращаются 4,26 миллионов тонн вещества, однако эта величина ничтожна по сравнению с массой Солнца – 2·10>27 тонн. Мощность, выделяемая различными зонами ядра, зависит от их расстояния до центра Солнца. В самом центре она достигает, согласно теоретическим оценкам, 276,5 Вт/м³. Ядро – центральное место на Солнце, в котором первородная энергия превращается в тепло для термоядерной реакции, остальная часть звезды нагрета этой энергией. Исходящая энергия ядра последовательно проходит сквозь слои, вплоть до фотосферы, с которой излучается в виде солнечного света и кинетической энергии.
Рис. 78. Внутреннее строение Солнца
Ближе к поверхности Солнца температуры и плотности вещества уже недостаточно для полного переноса энергии путём переизлучения. Возникает вихревое перемешивание плазмы, и перенос энергии к поверхности (фотосфере) совершается преимущественно движениями самого вещества. С одной стороны, вещество фотосферы, охлаждаясь на поверхности, погружается вглубь конвективной зоны. С другой стороны, вещество в нижней части получает излучение из зоны лучевого переноса и поднимается наверх, причём оба процесса идут со значительной скоростью. Такой способ передачи энергии называется конвекцией, а подповерхностный слой Солнца толщиной примерно 200 000 км, где она происходит, – конвективной зоной. По мере приближения к поверхности температура падает в среднем до 5800 градусов Кельвина, а плотность газа до менее 1/1000 плотности земного воздуха. В конвекционной зоне на поверхности возникают гранулы. Скорость вихревых потоков в них составляет в среднем 1—2 км/с, а максимальные её значения достигают 6 км/с. Время жизни гранул составляет 10—15 минут, что сопоставимо по времени с периодом, за который газ может однократно обойти вокруг гранулы. Следовательно, вихри в конвекционной зоне способствуют возникновению ячеек Бенара. В этой зоне возникает эффект магнитного динамо и, что порождают магнитное поле, имеющее сложную структуру.
Фотосфера (слой, излучающий свет) образует видимую поверхность Солнца. В абсолютных величинах фотосфера достигает толщины, по разным оценкам, от 100 до 400 километров. Из фотосферы исходит основная часть видимого излучения Солнца. Температура по мере приближения к внешнему краю фотосферы уменьшается с 6600 до 4400 градусов Кельвина. Хромосфера – внешняя оболочка Солнца толщиной около 2000 километров, окружающая фотосферу. Происхождение названия этой части солнечной атмосферы связано с её красноватым цветом, вызванным тем, что в видимом спектре хромосферы доминирует красная. Верхняя граница хромосферы не имеет выраженной гладкой поверхности, из неё постоянно происходят горячие выбросы, называемые спикулами. Число спикул, наблюдаемых одновременно, составляет в среднем 60—70 тысяч. Температура хромосферы увеличивается с высотой от 4000 до 20 000 градусов Кельвина. Плотность хромосферы невелика, поэтому яркость недостаточна для наблюдения в обычных условиях. Но при полном солнечном затмении, когда Луна закрывает яркую фотосферу, расположенная над ней хромосфера становится видимой и светится красным цветом. Её можно также наблюдать в любое время с помощью специальных узкополосных оптических фильтров. Хромосферная сетка, покрывающая всю поверхность Солнца и состоящая из линий, окружающих ячейки, грануляцию размером до 30 тысяч километров в поперечнике.
Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.
Освоение космоса давно шагнуло за рамки воображения:– каждый год космонавты отправляются за пределы Земли;– люди запускают спутники, часть которых уже сейчас преодолела Солнечную систему;– огромные телескопы наблюдают за звездами с орбиты нашей планеты.Кто был первым первопроходцем в небе? Какие невероятные теории стоят за нашими космическими достижениями? Что нас ждет в будущем? Эта книга кратко и понятно расскажет о самых важных открытиях в области астрономии, о людях, которые их сделали.Будьте в курсе научных открытий – всего за час!
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.