Кара небесная. Космическое миропонимание - [67]
r – расстояние от центра периферийного объекта, φ– – его угловая скорость движения.
Как известно, гармоническим осциллятором называется система, способная совершать гармонические колебания. В физике модель гармонического осциллятора играет важную роль, особенно при исследовании малых колебаний систем около положения устойчивого равновесия. Примером таких колебаний в квантовой механике являются колебания атомов в твердых телах, молекулах и т.д. Рассмотрим одномерный гармонический осциллятор в космическом масштабе, совершающий колебания вдоль оси ординат под действием возвращающей квазиупругой силы. Потенциальная энергия такого осциллятора имеет вид
где w>0– собственная частота классического гармонического осциллятора. Таким образом, квантово-механическая задача о гармоническом осцилляторе сводится к задаче о движении космического тела в параболической потенциальной яме.
Каждая упругая волна в космическом пространстве является гармоническим линейным осциллятором (Рис 74), который описывается выражениями:
Q = Asin (ωt + φ), p = mωA cos (ωt + φ),
где A – амплитуда, φ – начальная фаза колебаний, γ – частота колебаний,
ω = 2πү = √a/m
где а – коэффициент упругости волны.
Исключая время, находим фазовую траекторию:
Фазовой траекторией является эллипс с полуосями А и mωA. Фазовым пространством является плоскость (p, q) (Рис. 76).
Важной характеристикой системы является их площадь S орбит [45].
S = ∫ p dq = πab = πmωA>2;
Полная механическая энергия упругой волны равна
W = ωS / 2π = ү ∫ p dq
(5)
Откуда следует S = W • T, что эта зависимость имеет размерность: [действие] = [энергия] • [время], то есть площадь орбит – это энергия, умноженная на орбитальный период.
Рис. 76. Схема фазового пространства
Теория Большого взрыва гласит, что Вселенная возникла из точки с нулевым объемом и бесконечно высокими плотностью и температурой. Отсюда следует, что в предельном случае площадь орбит S в это время приближалась к нулю. При этом, чтобы в точечном пространстве была сосредоточена бесконечно большая первородная энергия W, необходимо практически бесконечная частота колебаний ү.
Первородная энергия, вначале сосредоточенная в точечном космическом пространстве, являлась движущей силой всей Вселенной. Эта энергия является до конца материального мира источником всех материальных объектов и других известных энергий. С самого начала её существования она обладала абсолютной полнотой для обеспечения эволюции Вселенной. Её главной функцией было производство полей и материи. Вновь образованные поля вокруг первородной энергии формировали прочную оболочку. Прочная связь оболочки внешних слоёв с первичным веществом осуществлялась посредством проникновения новых полей и нового вещества в промежутки первичного. При этом важным фактором взаимного проникновения являлось структурное родство и шероховатость поверхности.
Механическое зацепление оболочки на первых стадиях Большого взрыва весьма велико. Оболочка стремилась остановить процесс рождения нового вещества, что приводило к Большому и последующим взрывам. Каждая разлетающаяся часть содержала в себе определённую величину первородной энергии, освобождённую для дальнейшего производства полей и вещества. После их предельного накопления возникал новый взрыв, и это продолжалось многократно.
В последнее время в космологии стал широко применяться термин «темная энергия», вызывающий, по меньшей мере, легкое недоумение. Часто в паре с ним выступает и другой «мрачный» термин – «темная материя», а также упоминается, что, по данным наблюдений, эти две субстанции составляют 95% полной плотности Вселенной. Прольем же луч света на это «царство мрака».
Предыстория вопроса начинается в 1917 году, когда создатель общей теории относительности Альберт Эйнштейн, публикуя решение задачи об эволюции Вселенной, ввел в научный оборот понятие космологической постоянной. В своих уравнениях, описывающих свойства гравитации, он обозначил ее греческой буквой «лямбда» (Λ). Так она получила свое второе название – лямбда-член. Назначение космологической постоянной состояло в том, чтобы сделать Вселенную стационарной, то есть неизменной и вечной. Без лямбда-члена уравнения общей теории относительности предсказывали, что Вселенная должна быть неустойчивой, как воздушный шарик, из которого вдруг исчез весь воздух. Всерьез изучать такую неустойчивую Вселенную Эйнштейн не стал, а ограничился тем, что восстановил равновесие введением космологической постоянной.
Однако позднее, в 1922—1924 годах Александр Фридман рискнул рассмотреть неустойчивые модели Вселенной. В результате ему удалось найти еще не известные к тому времени нестационарные решения уравнений Эйнштейна, в которых Вселенная как целое сжималась или расширялась.Решения Фридмана поначалу были восприняты – в том числе и самим Эйнштейном – как математическое упражнение. Вспомнили о нем после открытия разбегания галактик в 1929 году. Фридмановские решения прекрасно подошли для описания наблюдений и стали важнейшей и широко используемой космологической моделью. А Эйнштейн позднее назвал космологическую постоянную своей «самой большой научной ошибкой».
Освоение космоса давно шагнуло за рамки воображения:– каждый год космонавты отправляются за пределы Земли;– люди запускают спутники, часть которых уже сейчас преодолела Солнечную систему;– огромные телескопы наблюдают за звездами с орбиты нашей планеты.Кто был первым первопроходцем в небе? Какие невероятные теории стоят за нашими космическими достижениями? Что нас ждет в будущем? Эта книга кратко и понятно расскажет о самых важных открытиях в области астрономии, о людях, которые их сделали.Будьте в курсе научных открытий – всего за час!
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.