Кара небесная. Космическое миропонимание - [66]

Шрифт
Интервал

Важнейшим параметром звезд является масса. Изучая свечение звезд, их спектры, установлено, что атмосферы звезд состоят из водорода, гелия и примеси некоторых других элементов. Именно в звездах имеются условия для формирования более тяжелых элементов, чем гелий. Температуры и светимости звезд заключены в очень широких пределах, но эти параметры не являются независимыми. Светимость звезд сравнивают со светимостью Солнца. Существуют звезды, в сотни тысяч раз более яркие и в сотни тысяч раз более слабые, чем Солнце. Звезды главной последовательности – это нормальные звезды, похожие на Солнце, в которых происходит сгорание водорода в термоядерных реакциях под воздействием первородной энергии. Дальнейшая эволюция звезды зависит от ее массы.




Рис. 75. Основные стадии эволюции звезд

Красные сверхгиганты и гиганты – это стадия звездной эволюции после образования протяженной конвективной оболочки, при которой растет светимость звезды. При этом звезда уходит с главной последовательности вправо. Начинается рост температуры в центре звезды.

Нейтронные звезды образуются при некоторых вспышках сверхновых звезд, если первоначальная масса звезды была 10–40 солнечных масс. Они быстро вращаются вокруг своей оси и обладают сильным магнитным полем. Движущиеся заряженные частицы генерируют электромагнитные волны, которые излучаются узким быстровращающимся пучком. Нейтронные звезды отождествляются с пульсарами.

Если конечная масса звезды слишком велика, то звезда становится черной дырой. Гравитационное поле столь массивной звезды так сильно сдавливает ее вещество, что звезда не может остановиться на стадии нейтронной звезды и продолжает сжиматься вплоть до гравитационного радиуса. Предполагают, что количество черных дыр в нашей Галактике около десяти миллионов.

Особый научный интерес представляет сверхновая звезда или вспышка сверхновой – феномен, в ходе которого звезда резко меняет свою яркость на 4—8 порядков (на десяток звёздных величин) с последующим сравнительно медленным затуханием вспышки. Этот феномен является результатом катаклизма, возникающего при взрыве поверхности звёзд и сопровождающегося выделением огромной энергии. Как правило, сверхновые звезды наблюдаются, когда событие уже произошло и его излучение достигло Земли. Поэтому природа сверхновых долго была неясна. Но сейчас предлагается довольно много сценариев, приводящих к подобного рода вспышкам.

Взрыв сопровождается выбросом значительной массы вещества из внешней оболочки звезды в межзвёздное пространство, а из оставшейся части вещества ядра взорвавшейся звезды, как правило, образуется компактный объект – нейтронная звезда, если масса звезды до взрыва составляла более 8 солнечных масс (M☉), либо черная дыра при массе звезды свыше 20 M☉ (масса оставшегося после взрыва ядра – свыше 5 M☉). При массах звёзд менее 5 M☉ происходит критическое накопление нового вещества, вызывающего взрыв поверхности и их обновление. Тогда они образуют остаток сверхновой. Выбрасываемое в ходе вспышки вещество в значительной части содержит продукты термоядерного синтеза. Именно благодаря сверхновым Вселенная в целом и каждая галактика в частности, химически эволюционирует. Разновидности остатка следующие:

1. Возможный компактный остаток; обычно это пульсар, но возможно и чёрная дыра.

2. Внешняя ударная волна, распространяющаяся в межзвёздном веществе.

3. Возвратная волна, распространяющаяся в веществе выброса сверхновой.

4. Вторичная, распространяющаяся в сгустках межзвёздной среды и в плотных выбросах сверхновой.

Вместе они образуют следующую картину: за фронтом внешней ударной волны газ нагрет до температур TS ≥ 10>7 К и излучает в рентгеновском диапазоне с энергией фотонов в 0,1—20 кэВ, аналогично газ за фронтом возвратной волны образует вторую область рентгеновского излучения. Линии высоко ионизированных Fe, Si, S и т. п. указывают на тепловую природу излучения из обоих слоев. Оптическое излучение молодого остатка создает газ в сгустках за фронтом вторичной волны. Так как в них скорость распространении выше, а значит газ остывает быстрее и излучение переходит из рентгеновского диапазона в оптический. Ударное происхождение оптического излучения подтверждает относительная интенсивность линий.

Обычно взрыв сверхновой сопровождается вихревыми выбросами в виде волокон. Волокна сами по себе свидетельствуют, что происхождение сгустков вещества может быть двояким. Так называемые быстрые волокна разлетаются со скоростью 5000—9000 км/с и излучают только в линиях O, S, Si – то есть это сгустки, сформированные в момент взрыва сверхновой. Стационарные конденсации же имеют скорость 100—400 км/с, и в них наблюдается нормальная концентрация H, N, O. Вместе это свидетельствуют, что это вещество было выброшено задолго до вспышки сверхновой и позже было нагрето внешней ударной волной. Вот некоторые примеры.

Движение космических тел [45] под действием центральной силы, обратно пропорциональной квадрату расстояния от центра силы F и равно:

F = -а/r >2; (2)

Потенциальная энергия системы Wп равна

Wп = – а/r;

(3)

где а – постоянная величина.


Рекомендуем почитать
Покоренный электрон

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.