Кара небесная. Космическое миропонимание - [70]

Шрифт
Интервал



Рис. 79. Изображение поверхности и короны Солнца, полученное Солнечным оптическим телескопом (SOT) на борту спутника Hinode.

Корона – последняя внешняя оболочка Солнца. Корона в основном состоит из протуберанцев и энергетических извержений, исходящих и извергающихся на несколько сотен тысяч и даже более миллиона километров в пространство, образуя солнечный ветер. Средняя корональная температура составляет от 1 000 000 до 2 000 000 градусов Кельвина, а максимальная, в отдельных участках, – от 8 000 000 до 20 000 000 градусов Кельвина. Несмотря на такую высокую температуру, она видна невооружённым глазом только во время полного солнечного затмения, так как плотность вещества в короне мала, а потому невелика и её яркость. Форма короны меняется в зависимости от фазы цикла солнечной активности: в периоды максимальной активности она имеет округлую форму, а в минимуме – вытянута вдоль солнечного экватора. Поскольку температура короны очень велика, она интенсивно излучает электромагнитные колебания в ультрафиолетовом и рентгеновском диапазонах. Излучение в разных областях короны происходит неравномерно. Существуют горячие активные и спокойные области, а также корональные дыры с относительно невысокой температурой в 600 000 градусов Кельвина, из которых в пространство выходят магнитные силовые линии. Такая («открытая») магнитная конфигурация позволяет частицам беспрепятственно покидать Солнце, поэтому солнечный ветер испускается в основном из корональных дыр.

Из внешней части солнечной короны истекает солнечный ветер – поток ионизированных частиц (в основном протонов, электронов и α – частиц), распространяющийся с постепенным уменьшением своей плотности, до границ гелиосферы. Солнечный ветер разделяют на два компонента – медленный солнечный ветер и быстрый солнечный ветер. Медленный солнечный ветер имеет скорость около 400 км/с и температуру 1,4—1,6·10>6 градусов Кельвина и по составу близко соответствует короне. Быстрый солнечный ветер имеет скорость около 750 км/с, температуру 8·10>5 градусов Кельвина, и по составу похож на вещество фотосферы. Медленный солнечный ветер вдвое более плотный и менее постоянный, чем быстрый. Полная потеря массы Солнцем составляет за год 2—3·10>−14 солнечных масс. Это эквивалентно потере массы, равной земной, за 150 миллионов лет.

Первые прямые измерения характеристик солнечного ветра были проведены в январе 1959 года советской станцией «Луна-1». Наблюдения проводились с помощью сцинтилляционного счётчика и газового ионизационного детектора. Три года спустя такие же измерения были проведены американскими учёными с помощью станции «Маринер-2». В конце 1990-х с помощью Ультрафиолетового коронального спектрометра на борту спутника SOHO были проведены наблюдения областей возникновения быстрого солнечного ветра на солнечных полюсах.



Рис. 80. Схема искажения магнитного поля Земли под действием солнечного ветра (в масштабе радиуса Земли)



Рис. 81. Масса солнечного вещества, выброшенного в открытый космос. Снимок сделан 24 января 1992 г. в мягком рентгеновском диапазоне.

Комплекс явлений, вызванных генерацией сильных магнитных полей на Солнце, называют солнечной активностью. Эти поля проявляются в фотосфере как солнечные пятна и вызывают такие явления, как солнечные вспышки, генерацию потоков ускоренных частиц, изменения в уровнях электромагнитного излучения Солнца в различных диапазонах, корональные выбросы массы, возмущения солнечного ветра. Одним из показателей солнечной активности является число Вольфа, связанное с количеством солнечных пятен на видимой стороне Солнца. Общий уровень солнечной активности меняется с характерным периодом, примерно равным 11 годам. Существуют вариации солнечной активности большей длительности. Так, во второй половине XVII века солнечная активность и, в частности, её одиннадцатилетний цикл были сильно ослаблены (минимум Маундера). В эту же эпоху в Европе отмечался Малый ледниковый период. Существует также точка зрения, что глобальное потепление до некоторой степени вызвано повышением глобального уровня солнечной активности во второй половине XX века. Тем не менее, механизмы такого воздействия пока ещё недостаточно ясны. Самая большая группа солнечных пятен за всю историю наблюдений возникла в апреле 1947 года в южном полушарии Солнца. Её максимальная длина составляла 300 тысяч километров, максимальная ширина – 145 тысяч километров. Группа была легко видна невооружённым глазом в предзакатные часы. Согласно каталогу, Пулковской обсерватории, эта группа (№ 87 за 1947 год) проходила по видимой с Земли полусфере Солнца с 31 марта по 14 апреля 1947 года.

Солнечные пятна являются областями выхода в фотосферу сильных (до нескольких тысяч гаусс) магнитных полей. Потемнение фотосферы в пятнах обусловлено подавлением магнитным полем конвективных движений вещества и, как следствие, снижением потока переноса тепловой энергии в этих областях. Пятна возникают в результате возмущений отдельных участков магнитного поля Солнца. В начале этого процесса трубки магнитного поля «прорываются» сквозь фотосферу в область короны, и сильное поле подавляет конвективное движение плазмы в гранулах, препятствуя в этих местах переносу энергии из внутренних областей наружу. Сначала в этом месте возникает факел, чуть позже и западнее – маленькая точка, называемая по́ра, размером несколько тысяч километров. В течение нескольких часов величина магнитной индукции растет (при начальных значениях 0,1 тесла), размер и количество пор увеличивается. Они сливаются друг с другом и формируют одно или несколько пятен. В период наибольшей активности пятен величина магнитной индукции может достигать 0,4 тесла.


Рекомендуем почитать
Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


Астрономия за 1 час

Освоение космоса давно шагнуло за рамки воображения:– каждый год космонавты отправляются за пределы Земли;– люди запускают спутники, часть которых уже сейчас преодолела Солнечную систему;– огромные телескопы наблюдают за звездами с орбиты нашей планеты.Кто был первым первопроходцем в небе? Какие невероятные теории стоят за нашими космическими достижениями? Что нас ждет в будущем? Эта книга кратко и понятно расскажет о самых важных открытиях в области астрономии, о людях, которые их сделали.Будьте в курсе научных открытий – всего за час!


Покоренный электрон

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.