Как работает Вселенная: Введение в современную космологию - [4]

Шрифт
Интервал

ОТО не только объяснила прецессию перигелия Меркурия, но и обеспечила точное количественное согласие теории с наблюдаемой скоростью прецессии. После дальнейшего улучшения точности наблюдений была обнаружена подобная прецессия перигелия Венеры, которая вместе с другими описанными ниже эффектами подтверждает правильность ОТО. В результате Международный астрономический союз (МАС) – высший мировой авторитет в астрономии – издал постановление об обязательном рассмотрении эффектов ОТО при точных расчетах орбит небесных тел в Солнечной системе.

Еще более впечатляющее проявление прецессии, в данном случае периастра (точки орбиты, которая ближе всего к звезде), наблюдается в системах двойных пульсаров[5]. Два массивных тела в этом случае вращаются с периодом в несколько дней на небольшом расстоянии друг от друга. ОТО описывает их движение с точностью до 0,01 %, при этом наблюдаются потери энергии из-за излучения гравитационных волн. За обнаружение таких систем Рассел Алан Халс и Джозеф Хотон Тейлор-младший получили Нобелевскую премию по физике за 1993 г.

1.2.2. Отклонение света

Второй эффект заключается в искривлении световых лучей в гравитационном поле массивных объектов. Это искривление само по себе не было неожиданностью и вполне объяснимо в рамках ньютоновской механики. Но предсказанный ОТО угол отклонения света был в два раза больше по сравнению с ньютоновским. Причина, по которой появился этот коэффициент, будет обсуждена ниже, в подразделе 1.3.2.

В то время явление было чисто умозрительным, но упомянутое различие углов отклонения позволяло узнать, какая из теорий правильно описывает этот эффект, и заставило астрономов измерить его величину. Для этого нужно было измерить положение звезды, свет которой распространялся вблизи Солнца и отклонялся в его гравитационном поле, смещая видимое положение звезды на небе. С современной точностью этот эффект можно измерить даже в перпендикулярном по отношению к Солнцу направлении, используя радиоинтерферометр со сверхдлинной базой (РСДБ), но в начале XX в. он мог быть измерен только на очень небольшом участке неба вокруг Солнца.

Это было сделано экспедицией сэра Артура Эддингтона, которая измерила положения звезд во время полного солнечного затмения 1919 г. Полное солнечное затмение было необходимо, так как в то время астрономы могли производить наблюдения только в видимом свете, и свет Солнца сделал бы невозможным наблюдения звезд возле его диска. Эддингтон и его коллеги проводили наблюдения в Бразилии и на западном побережье Африки. Сравнив фотографии неба вблизи Солнца во время затмения и той же области неба вдали от Солнца, они измерили угол отклонения, который соответствовал предсказанию Эйнштейна. Эти наблюдения все же были недостаточно точны, но ситуация существенно улучшилось после появления радиотелескопов.

Эффект отклонения света является основой для так называемого гравитационного линзирования, при котором наблюдаются несколько изображений одного и того же объекта. Оно активно изучается и даже используется в качестве инструмента для нестандартного наблюдения чрезвычайно удаленных объектов. Мы обсудим это в подразделе 4.2.7.

1.2.3. Гравитационное красное смещение

Третий эффект называется гравитационным красным смещением[6] и описывает разницу в скорости течения времени в точках с различными гравитационными потенциалами[7]. Грубо говоря, время течет быстрее на верхнем этаже здания, чем в его подвале. Это и является причиной изменения частоты. Пусть источник в подвале передает, скажем, 1000 сигналов в секунду. Они ловятся приемником на крыше, но для приемника секунды имеют другую продолжительность, так что в течение своей секунды он получает не 1000, а, например, 999 сигналов. Другими словами, частота в приемнике смещается относительно частоты источника.

Астрономы наблюдали гравитационное красное смещение в спектрах излучения белых карликов, в частности у Сириуса B, который приблизительно содержит массу Солнца в объеме Земли. В результате гравитационный потенциал на его поверхности значительно превосходит максимальные значения, наблюдаемые в Солнечной системе.

Этот эффект был также продемонстрирован в лабораторных условиях Робертом Паундом и Гленом Ребкой в 1959 г. Они построили свой эксперимент вокруг основополагающей идеи квантовой механики о том, что для возбуждения атома из основного состояния[8] он должен поглотить фотон с точно такой же энергией или длиной волны, какой возбужденный атом излучает при переходе в основное состояние[9]. Если что-то (в нашем случае гравитационное красное смещение) изменит пусть даже совсем незначительно энергию или длину волны фотона, пока тот перемещается от одного атома к другому, то фотон не будет поглощаться. Тем не менее он все еще может быть поглощен, если атом-приемник движется таким образом, что изменение длины волны из-за эффекта Доплера[10] компенсирует изменение длины волны из-за гравитационного красного смещения.

Итак, Паунд и Ребка положили одну железную пластину в подвале, присоединили другую к конусу громкоговорителя на крыше и измерили фазу динамика, при которой гамма-поток, создаваемый возбужденными атомами железа в подвале, сильнее всего поглощается атомами железа на крыше. Это дало им возможность вычислить изменение энергии фотона из-за разницы в гравитационном потенциале или скорости течения времени на крыше и в подвале. Их результаты соответствовали предсказанию ОТО в пределах 10 % погрешности.


Рекомендуем почитать
Серебристые облака и их наблюдение

В книге рассказывается о самых высоких облаках земной атмосферы — серебристых, или мезосферных облаках. В первой главе рассказано об условиях видимости, структуре, оптических свойствах, природе и происхождении серебристых облаков, об исследованиях их из космоса. Во второй главе даны указания к наблюдениям серебристых облаков средствами любителя астрономии.


Астронавт. Необычайное путешествие в поисках тайн Вселенной

В детстве Майкл Массимино по прозвищу Масса мечтал стать Человеком-пауком, но в июле 1969 года он вместе со всем миром увидел, как прогуливаются по Луне Нил Армстронг и Базз Олдрин, и навсегда заболел мечтой о полете к звездам. На этом пути его поджидали препятствия, казавшиеся непреодолимыми: Майкл страдал страхом высоты, у него было плохое зрение, он проваливал важные экзамены. Однако упорство и верность мечте сделали свое дело: он не только сумел стать уникальным специалистом в области практической космонавтики, разработав программное обеспечение для роботизированного манипулятора, но и сам дважды слетал на орбиту, приняв участие в миссиях по ремонту телескопа «Хаббл».


Сказка о небесных механиках, заставивших небесных гигантов играть в футбол

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Сказка об астрономе Слайфере

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Затмение Луны и Солнца

Серия научно-популяризаторских рассказов в художественной форме об астрономических событиях.


Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.