Как работает Вселенная: Введение в современную космологию - [3]

Шрифт
Интервал

Со временем прогресс в астрономии привел к модели Вселенной, предложенной Уильямом Гершелем в конце XVIII в. В ней звезды не заполняли всю Вселенную, а образовывали единственное звездное скопление, называемое Галактикой и имеющее линзовидную форму. В связи с этим возник вопрос: почему звезды не падают на центр Галактики? Ответ был столь же прост, как и ответ на вопрос, почему планеты не падают на Солнце: они обращаются вокруг него. Точно так же и отдельные звезды Галактики обращаются вокруг ее центра. Движение Солнца относительно центра Галактики было обнаружено все тем же Гершелем в 1783 г. С незначительными уточнениями эта картина мироздания считалась общепринятой до начала XX в. Идея Галактики решала парадокс Ольберса, поскольку материя теперь занимала конечный объем во Вселенной. Однако, после того как были открыты другие галактики, парадокс Ольберса опять стал актуальным.

Таким образом, космология, которая потенциально могла появиться еще в конце XVII в., появилась лишь в начале XX в. и недавно отпраздновала свой столетний юбилей. Возникновение космологии связано с одним удивительным обстоятельством: обычно новые науки появляются в простейшей постановке и затем, в процессе своего развития, переходят к более сложным моделям, расчетам и используют все более современные физические теории. Например, физика твердого тела столетиями получала результаты, основываясь на классической физике, и только потом стала успешно использовать квантовую механику.

Космология же появилась сразу в своем самом сложном варианте – в виде релятивистской космологии, основанной на ОТО. И лишь спустя десятилетия космологи к немалому удивлению обнаружили, что можно рассматривать куда более простую нерелятивистскую космологию. Дело в том, что однородная Вселенная развивается одинаково во всех своих частях, и для изучения развития ее как целого достаточно изучить развитие небольшой области пространства, например 1 см³. А при изучении 1 см³ уже не важны кривизна пространства-времени и другие сложные вопросы ОТО.

Но это справедливо только в случае однородной и изотропной Вселенной. В подобном мире нет избранного места или предпочтительного направления, каждая точка не может быть лучше или хуже, чем любая другая, и каждое направление не лучше или хуже любого другого. Эта идея известна как принцип Коперника. Хотя не все результаты релятивистской космологии могут быть получены в рамках нерелятивистской, но основные понятия выводятся довольно просто. Для их вывода, понимания и анализа достаточно знания физики на уровне младших курсов университета. Поэтому в книге в случаях, когда мы просто не могли отказать себе в желании написать некоторые формулы, мы ограничились нерелятивистской космологией.


Вопрос: Чем космология принципиально отличается от других наук?

Ответ: Тем, что она изучает уникальный, существующий в единственном экземпляре, изменяющийся во времени объект, частью которого мы являемся. В результате не может идти речи ни о повторяемости, ни о воспроизводимости, ни, тем более, об активных экспериментах. В связи с этим к космологическим теориям очень сложно применить критерий фальсифицируемости, выполнение которого требуется от любых научных теорий. Аналогичная ситуация встречается и в некоторых других научных дисциплинах, таких как история и эволюционная биология.

1.2. Принципы общей теории относительности

Появлению науки космологии предшествовало появление ОТО, окончательно сформулированной Эйнштейном в 1916 г. Эта теория является одной из вершин современной физики. Так как ее идеи и терминология широко используются в космологии, мы решили описать основы ОТО, которые достаточно просты для понимания и могут быть объяснены без использования сложного математического аппарата. Мы начнем с трех классических эффектов ОТО.

1.2.1. Прецессия перигелия

Первый эффект был обнаружен астрономами еще задолго до появления ОТО. Это прецессия[3] перигелия[4] Меркурия, которая проявляется как вращение орбиты Меркурия как целого вокруг Солнца с очень малой угловой скоростью – менее 6 угловых секунд в год. Это было не первое обнаруженное отклонение от простейших законов небесной механики с момента их открытия Иоганном Кеплером. Ранее, в середине XIX в., аналогичное поведение орбиты Урана было успешно объяснено гравитационным влиянием неизвестной тогда планеты, позже получивший название Нептун.

Один из предсказателей существования Нептуна, Урбен Леверье, применил тот же подход к орбите Меркурия, предположив существование новой планеты Вулкан, которая должна быть расположена очень близко к Солнцу и скрываться на фоне его света. После этого предсказания в течение нескольких десятилетий как профессиональные астрономы, так и астрономы-любители сообщали о наблюдении прохождения этой гипотетической планеты по солнечному диску, но затем, после усовершенствования телескопов, эти сообщения были признаны ошибочными. Теперь мы знаем, что планеты Вулкан не существует, и это было известно почти наверняка еще 100 лет назад. Таким образом, вращение орбиты Меркурия надо было как-то объяснить.


Рекомендуем почитать
Серебристые облака и их наблюдение

В книге рассказывается о самых высоких облаках земной атмосферы — серебристых, или мезосферных облаках. В первой главе рассказано об условиях видимости, структуре, оптических свойствах, природе и происхождении серебристых облаков, об исследованиях их из космоса. Во второй главе даны указания к наблюдениям серебристых облаков средствами любителя астрономии.


Астронавт. Необычайное путешествие в поисках тайн Вселенной

В детстве Майкл Массимино по прозвищу Масса мечтал стать Человеком-пауком, но в июле 1969 года он вместе со всем миром увидел, как прогуливаются по Луне Нил Армстронг и Базз Олдрин, и навсегда заболел мечтой о полете к звездам. На этом пути его поджидали препятствия, казавшиеся непреодолимыми: Майкл страдал страхом высоты, у него было плохое зрение, он проваливал важные экзамены. Однако упорство и верность мечте сделали свое дело: он не только сумел стать уникальным специалистом в области практической космонавтики, разработав программное обеспечение для роботизированного манипулятора, но и сам дважды слетал на орбиту, приняв участие в миссиях по ремонту телескопа «Хаббл».


Сказка о небесных механиках, заставивших небесных гигантов играть в футбол

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Сказка об астрономе Слайфере

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Затмение Луны и Солнца

Серия научно-популяризаторских рассказов в художественной форме об астрономических событиях.


Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.