Как работает Вселенная: Введение в современную космологию - [2]

Шрифт
Интервал

. В ней впервые законы физики были применены ко всей Вселенной сразу. Конкретно речь шла об уравнениях недавно открытой Эйнштейном ОТО.

В принципе ничто не мешало этой науке появиться на 250 лет раньше, сразу после открытия Исааком Ньютоном закона всемирного тяготения. Физики XVII–XIX вв. рассуждали о бесконечной Вселенной, заполненной звездами, вокруг которых обращаются планеты. Такая Вселенная существовала вечно и все, что нужно было для предсказания ее будущего состояния, – это знание законов механики и текущего положения всех объектов. Однако сила всемирного тяготения в классической механике имеет одну особенность: это всегда сила притяжения, которая никогда не становится силой отталкивания. Поэтому отдельные звезды в бесконечной Вселенной под действием силы взаимного притяжения должны были бы в конце концов собраться вместе. Вопрос о взаимном притяжении решался с помощью простого, но неверного рассуждения: раз Вселенная бесконечна, то на каждую частицу действует сила притяжения бесконечного числа других частиц. Если считать, что частицы заполняют Вселенную с постоянной плотностью, можно сделать вывод, что суммарная сила компенсируется, следовательно, гравитационным притяжением при рассмотрении динамики Вселенной в целом можно пренебречь.

Эта идея подобна попыткам поставить карандаш на кончик грифеля. В обоих случаях причиной проблем является неустойчивость равновесия. Даже если мы как-то умудримся поставить карандаш вертикально на острый конец грифеля, то любое сколь угодно малое отклонение от вертикали вызывает момент силы, отклоняющий карандаш в том же направлении, увеличивающий отклонение и полностью нарушающий исходное равновесие. В технике это называется положительной обратной связью.

Еще более близкая аналогия связана с водой в перевернутом стакане. Многие знакомы с классическим опытом, в котором стакан с водой, накрытый открыткой или плотной картонкой, переворачивают верх дном и вода удерживается в стакане атмосферным давлением, эквивалентным давлению 10,3 м воды. Но немногие задумываются, зачем для этого опыта необходима картонка. Причина связана с неустойчивостью Рэлея – Тейлора: когда более плотная жидкость (вода) помещена над менее плотной (воздух[2]), любое отклонение поверхности от плоской будет экспоненциально расти со временем, разрушая границу очень быстро. Процесс обычно называется выливанием жидкости. Вот почему для демонстрации необходима картонка: она никак не влияет на давление воздуха, не создает никаких сил, но фиксирует форму границы раздела между водой и воздухом, препятствуя развитию неустойчивости Рэлея – Тейлора.

Аналогично, в неустойчивой Вселенной случайным образом образуются области повышенной плотности, к которым начинают двигаться соседние звезды и области пониженной плотности, называемые войдами. Заметим, что взаимное притяжение звезд, заполняющих бесконечную Вселенную, приводит не только к росту возмущений плотности, но и к ускоренному сжатию всей Вселенной, т. е. к уменьшению расстояний между звездами.

Естественно, ученым было известно, что отклонения от однородного распределения плотности материи приводили к тому, что неоднородности начинали нарастать со временем, но в тот период этот механизм рассматривался только на масштабах, не превышающих размеры Солнечной системы. Согласно гипотезе Лапласа, планеты Солнечной системы образовались из исходной газопылевой туманности именно под влиянием взаимного гравитационного притяжения. К большим масштабам подобные рассуждения не применяли. В рассматриваемой картине мира рост неоднородностей плотности материи приводил к образованию планет, которые не падали на Солнце только потому, что обращались вокруг него. На расстояниях, сравнимых с расстоянием до ближайших звезд, Вселенная уже рассматривалась как нечто однородное, и считалось, что сила притяжения какого-либо тела к разным звездам полностью компенсируется.

Эту радужную картину нарушал так называемый парадокс Ольберса, сформулированный в 1823 г. немецким астрономом-любителем Хайнрихом Ольберсом, врачом по профессии. Суть его состояла в том, что в бесконечной неизменной Вселенной вместо ночного неба мы видели бы раскаленную небесную сферу, светящуюся, как поверхность Солнца. Объясняется это следующим образом: если мы разделим Вселенную на концентрические сферические оболочки постоянной толщины с Землей в центре, то поток света, падающий на Землю от каждой из оболочек, будет одинаков, поскольку число звезд в них будет расти пропорционально квадрату расстояния, что скомпенсирует аналогичный множитель в формуле для освещенности. Поскольку число слоев бесконечно, то и общая сумма будет бесконечна. Единственная причина, по которой освещенность будет все же конечной, это то, что более близкие звезды будут закрывать собой далекие. Другими словами, в каком бы направлении мы ни посмотрели, рано или поздно луч нашего зрения должен наткнуться на какую-то звезду.

Тем не менее каждый из нас прекрасно знает, что ночью наблюдается совсем другая картина. В качестве простого решения парадокса Ольберса предлагали вариант, при котором свет далеких звезд поглощается облаками межзвездной пыли, но это решение звучит убедительно только для тех, кто не знает физику. За продолжительное время эта пыль, поглощая излучение, нагрелась бы до температуры окружающих звезд и сама стала бы светящимся объектом.


Рекомендуем почитать
Серебристые облака и их наблюдение

В книге рассказывается о самых высоких облаках земной атмосферы — серебристых, или мезосферных облаках. В первой главе рассказано об условиях видимости, структуре, оптических свойствах, природе и происхождении серебристых облаков, об исследованиях их из космоса. Во второй главе даны указания к наблюдениям серебристых облаков средствами любителя астрономии.


Астронавт. Необычайное путешествие в поисках тайн Вселенной

В детстве Майкл Массимино по прозвищу Масса мечтал стать Человеком-пауком, но в июле 1969 года он вместе со всем миром увидел, как прогуливаются по Луне Нил Армстронг и Базз Олдрин, и навсегда заболел мечтой о полете к звездам. На этом пути его поджидали препятствия, казавшиеся непреодолимыми: Майкл страдал страхом высоты, у него было плохое зрение, он проваливал важные экзамены. Однако упорство и верность мечте сделали свое дело: он не только сумел стать уникальным специалистом в области практической космонавтики, разработав программное обеспечение для роботизированного манипулятора, но и сам дважды слетал на орбиту, приняв участие в миссиях по ремонту телескопа «Хаббл».


Сказка о небесных механиках, заставивших небесных гигантов играть в футбол

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Сказка об астрономе Слайфере

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Затмение Луны и Солнца

Серия научно-популяризаторских рассказов в художественной форме об астрономических событиях.


Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.