Как мы видим? Нейробиология зрительного восприятия - [20]
Итак, опубликовав 20–30 научных работ, наша группа накопила достаточно данных, чтобы составить список из дюжины различных типов клеток сетчатки. Каждый из этих типов клеток окрашивался с высокой степенью надежности, что давало нам возможность четко увидеть всю популяцию клеток этого типа по всей сетчатке отдельно от других нейронов. Мы могли измерить их размер, изучить их форму и структуру связей и сосчитать – что, хотя и звучит банально, лежало в основе настоящей науки, которая уводила нас от коллекционирования бабочек в виде отдельных «типичных» клеток и вела к пониманию общей схемы и, как следствие, того, какую функцию выполняют разные типы клеток в зрительной системе. Например, некоторые типы нейронов были очень малочисленны, но протягивали свои дендриты на большие расстояния по сетчатке. Это говорило о том, что эта популяция не могла быть вовлечена в передачу изображения с высоким разрешением. Низкая плотность клеток означала слишком крупные пиксели: каждая клетка передавала информацию о слишком большой области видимого мира, поэтому изображение, получаемое мозгом, должно было выглядеть состоящим из огромных расплывчатых пятен. И наоборот, некоторые типы крошечных клеток присутствовали в сетчатке в огромных количествах, и им была свойственна высокая плотность. Мы сразу же предположили, что эти клетки образуют канал передачи изображения высокого разрешения от фоторецепторов в мозг, и последующие исследования подтвердили наш вывод.
Таким образом, мы и другие лаборатории увлеченно изучали под микроскопом красивые светящиеся картинки и постепенно начинали понимать, как устроена сетчатка, – пока не столкнулись с проблемой отсутствия реагентов для окраски. Нам удалось найти всего несколько маркерных молекул, способных окрашивать конкретные типы клеток, а все остальное, что мы пробовали, не работало. В комнате остался огромный невидимый слон: бо́льшая часть клеток, которые мы сумели идентифицировать, относилась к редким типам. Поскольку иммуноцитохимический метод позволял выделять сразу целые популяции, мы видели, что большинство этих типов клеток распределено по сетчатке с очень малой плотностью: существовали целые области, где маркерные молекулы не окрашивали ни единой клетки. Если сравнить сетчатку с детской картинкой-раскраской, нам удалось раскрасить всего 20 % ее поверхности, а остальные 80 % оставались белым или, точнее, темным пятном.
Мы были обескуражены. Наше стремление разобраться в устройстве системы зрительной сигнализации ганглионарных клеток, казалось, наткнулось на непреодолимое препятствие: если мы не можем идентифицировать большую часть элементов системы, как мы можем надеяться узнать, каким образом эта система производит свои операции, такие как повышение контрастности, избирательность в отношении направления и т. п.?
Я признаю, что нашим желанием составить полный каталог нейронов сетчатки отчасти двигало простое любопытство. Представьте, что вам подарили старинные часы без инструкции по эксплуатации. Вас заинтересовало их необычное устройство. С функцией маятника все более-менее понятно. Но что делает каждая из этих блестящих латунных шестеренок и прочих деталей? Зачем они нужны? Сама Природа, этот божественный часовщик, дразнила наше любопытство.
Проблема с исследованием сетчатки и остальной части центральной нервной системы была в том, что, будучи окрашены неспецифическими красителями, все нейроны выглядели одинаково. Доступные универсальные красители высвечивали только тела клеток, тогда как именно тонкие нейронные отростки – дендриты, принимающие входные сигналы, и аксоны, посылающие сигналы другим клеткам, – делают каждый тип нейрона особым. Именно по этой причине изучение типов нервных клеток в прошлом страдало от отсутствия системности: нам приходилось работать с отдельными экземплярами, которые удавалось окрасить, и в наших теориях было слишком много места для случайности и догадок.
Мы считали, что в изучении сетчатки мы можем добиться прогресса. В отличие от многих других областей мозга, нам была известна ее функция. У сетчатки есть четко определенное начало и конец; информационные потоки текут через нее в одном направлении; она пространственно компактна – расстояние от фоторецепторов до ганглионарных клеток составляет всего около трети миллиметра. На наш взгляд, было вполне достижимой целью создать карту всех клеток сетчатки. Сегодня такую карту всех нейронов и структуры их связей называют нейромом (neurome) – по аналогии с геномом, совокупностью генов живого организма.
Но как подступиться к этой задаче? Перед нами лежала практически неизведанная территория. Даже об основных классах нейронов сетчатки – фоторецепторах, горизонтальных, биполярных, амакриновых и ганглионарных клетках – на тот момент имелись лишь обрывочные сведения. При использовании обычных красителей эти пять типов клеток выглядели почти одинаково, отличаясь друг от друга немногим больше, чем маленькие овалы на рисунке на следующей странице. Мы знали о существовании этих больших классов клеток и примерно догадывались об их количестве, но как получить более точную информацию обо всех элементах системы? Сетчатка выглядела для нас примерно так, как на этом рисунке: мы могли идентифицировать несколько отдельных клеток (здесь они нарисованы как черные кружки с отростками), а остальные (белые кружки) оставались для нас загадками.
Созданный более 4000 лет назад Фестский диск до сих пор скрывает множество тайн. Этот уникальный археологический артефакт погибшей минойской цивилизации, обнаруженный на острове Крит в начале XX века, является одной из величайших загадок в истории человечества. За годы, прошедшие со дня его находки, многие исследователи пытались расшифровать нанесенные на нем пиктограммы, однако до настоящего времени ни одна из сотен интерпретаций не получила всеобщего признания.Алан Батлер предлагает собственную научно обоснованную версию дешифровки содержимого Фестского диска.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Описываются дедуктивные, индуктивные и правдоподобные модели, учитывающие особенности человеческих рассуждений. Рассматриваются методы рассуждений, опирающиеся на знания и на особенности человеческого языка. Показано, как подобные рассуждения могут применяться для принятия решений в интеллектуальных системах.Для широкого круга читателей.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.