Как мы видим? Нейробиология зрительного восприятия - [19]

Шрифт
Интервал

Я прилетел на конференцию вместе с двумя гарвардскими друзьями, но, поскольку их интересы лежали в смежных научных областях, они решили пропустить доклад Вессле. Я оставил их в сколоченном из грубых досок баре на набережной под шелестящими кронами пальм, в которых мягко играл легкий бриз из Мексиканского залива. Когда я вернулся, они заканчивали второй кувшин пива. «То, что я только что узнал, навсегда изменит наш подход к изучению нейронных сетей», – сказал я им.

«И что же это такое?» – с нетерпением спросили они.

Я рассказал им об исследовании Вессле и объяснил, что вскоре мы сможем идентифицировать целые популяции клеток и, опираясь на их стереотипные формы, определить их функции. Наконец-то мы сможем прийти к чему-то системному, построенному на надежной количественной и воспроизводимой основе!

Я видел, что они разочарованы. «Анатомия? – думали они. – Ты, наверное, шутишь?!» Но доклад Вессле выкристаллизовал мое мышление: я четко увидел алгоритм, путь вперед, который рано или поздно должен был привести нас к пониманию того, каким образом работает система зрительного восприятия.

Как показало будущее, знание того, как организованы нейроны в сетчатке, – и, в частности, представление об их функциональном разнообразии, – также помогло нам глубже понять другие структуры центральной нервной системы.

4 | Нейроны-призраки

Либо ты, Тиресий, знаешь это наверняка, либо не знаешь вовсе.

ЭЗРА ПАУНД

Тихая революция, произошедшая в нейробиологии в XXI в., была связана с возрождением анатомии. К тому времени некоторые считали анатомию устаревшей наукой, в которой не было места для прорывных открытий. Тем не менее никто не отрицал важности изучения структуры головного мозга. Работа основоположника и покровителя нейробиологии Сантьяго Рамона-и-Кахаля была всецело основана на нейроанатомии. Студенты-медики на протяжении всех последних поколений зубрили названия отделов, ядер и трактов мозга. В широком смысле нейроанатомия, или, как ее теперь иногда называют, структурная нейробиология, говорила нам следующее: мозг – это машина связей и все, что он делает, в конечном итоге сводится к тому, как соединены между собой различные его части.

На рубеже ХХ – XXI вв. ряд технических достижений привел к скачку в понимании анатомии мозга. Первым было значительное улучшение разрешения микроскопов, что было связано с изобретением так называемого конфокального микроскопа (я покажу вам один из них в действии ближе к концу книги). Вторым стало развитие способов визуализации клеточных компонентов. Магические инструменты молекулярной биологии дали нам возможность создавать маркеры даже для самых крошечных частей субклеточного аппарата, а конфокальные микроскопы позволили наблюдать за его работой. Мы получили возможность видеть то, о чем раньше могли лишь мечтать: клетки в движении, плавающие в своей естественной среде; клеточные кластеры, где разные типы клеток светятся в темноте разными цветами, и т. д. Эти достижения позволили нам замахнуться на, как казалось ранее, немыслимое: составить полную опись всех нейронов головного мозга (и сетчатки, в частности), что должно было стать первым шагом на пути к распутыванию его замысловатой системы связей.

ЗАГАДОЧНЫЕ НЕЙРОНЫ

Проведенное Хайнцем Вессле исследование ганглионарных альфа- и бета-клеток, о котором я узнал на конференции во Флориде, показало нейробиологам, что мы можем подойти к изучению сетчатки с другой стороны: сначала составить полный список ее компонентов, а затем попытаться выяснить, какие функции они выполняют. Тем более что к тому времени у нас появились новые замечательные инструменты, которые позволяли это сделать.

Одним из таких инструментов была иммуноцитохимия (ИЦХ). Этот метод, получивший широкое распространение с начала 1990-х гг., позволяет обнаружить присутствие практически любой белковой молекулы внутри клетки или ткани. Если вы когда-нибудь смотрели видео с завораживающими светящимися нейронами, знайте, что их, скорее всего, снимали с использованием иммуноцитохимии. Это довольно простая техника, которая обеспечивает потрясающую визуализацию.

Конечно, не обходится без трудностей и разочарований. Как-то моя лаборатория потратила целый год впустую из-за некачественного коммерческого реактива (в финансовом плане этот неэтичный поставщик обошелся американским налогоплательщикам почти в $300 000). Как бы то ни было, нейробиологи с головой погрузились в ИЦХ-исследования: Харви Картен и Ник Бреча, пионеры этого метода; Джули Санделл сначала в Гарварде, затем в Бостонском университете; Берндт Эхингер в Швеции; Хайнц Вессле и Лео Пайхль в Германии; Дайана Редберн и Стив Мэсси в Техасе и, разумеется, я. Благодаря иммуноцитохимии молодой новозеландский исследователь Дэвид Вэйни нашел свое призвание: он прославился своими потрясающе красивыми снимками, сделанными через микроскоп, так что в конце концов ушел из науки и начал карьеру фотографа.

При наличии подходящих ИЦХ-реагентов этот метод позволял увидеть через флуоресцентный микроскоп все клетки сетчатки, содержавшие конкретную молекулу-мишень. При малом увеличении перед вашим взором представало поле светящихся звезд на темном фоне. При большом увеличении можно было детально рассмотреть форму отдельного нейрона, его тонкие отростки, извивающиеся по сетчатке или ныряющие в глубь нее, его структуру связей с другими клетками. Но как найти вещества-реагенты с избирательным воздействием на конкретные молекулы, которые присутствуют в интересующих нас подтипах нейронов сетчатки? Это делалось (и делается до сих пор) методом научного тыка. Лучшими реагентами были и остаются синаптические нейромедиаторы: дофамин, наш старый знакомый ацетилхолин, серотонин и т. п., каждый из которых присутствует в относительно небольшом наборе нейронов сетчатки. (Разумеется, нейроны содержат намного больше различных молекул, предположительно десятки тысяч. Но большинство из них – особенно те, что отвечают за поддержание клеточной структуры и обеспечение клетки энергией, – присутствуют во многих типах клеток не только в сетчатке, но и в головном мозге и других частях тела. Поэтому для нас такие молекулы бесполезны.)


Рекомендуем почитать
Компьютер Бронзового века: Расшифровка Фестского диска

Созданный более 4000 лет назад Фестский диск до сих пор скрывает множество тайн. Этот уникальный археологический артефакт погибшей минойской цивилизации, обнаруженный на острове Крит в начале XX века, является одной из величайших загадок в истории человечества. За годы, прошедшие со дня его находки, многие исследователи пытались расшифровать нанесенные на нем пиктограммы, однако до настоящего времени ни одна из сотен интерпретаций не получила всеобщего признания.Алан Батлер предлагает собственную научно обоснованную версию дешифровки содержимого Фестского диска.


Неопознанные летающие объекты - величайшая научная проблема нашего времени

Автором произведенена попытка проследить и систематизировать историю появления НЛО.


Космогоническая машина

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Моделирование рассуждений. Опыт анализа мыслительных актов

Описываются дедуктивные, индуктивные и правдоподобные модели, учитывающие особенности человеческих рассуждений. Рассматриваются методы рассуждений, опирающиеся на знания и на особенности человеческого языка. Показано, как подобные рассуждения могут применяться для принятия решений в интеллектуальных системах.Для широкого круга читателей.


Библиография как историческая наука

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


О гравитации нетрадиционно

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.