История лазера - [8]

Шрифт
Интервал

Рис 3. (а). Падающий, отраженный и преломленный лучи. Закон преломления утверждает, что sin θ>1/sin θ>2 = v1/v2, где v>1 и v>2 — скорости света в первой и во второй средах, соответственно, (б) Пучок света, отраженный и преломленный к куске стекла


Имеются три закона геометрической оптики: первый утверждает, что свет распространяется по прямой линии, если только не встречает помех; вторым и третьим законами являются законы отражения и преломления. Первый закон уже можно найти в труде по оптике, написанном Эвклидом (300 лет до н.э.), там же содержится и закон отражения; но оба они были известны и ранее.

Без сомнения явление преломления света было известно Аристотелю. Позднее Птолемей старался, правда безуспешно, вывести количественный закон. Из измерений, сделанных им для сравнительно малых углов, он сделал ошибочное утверждение, что угол преломления пропорционален углу падения. Много позднее арабский оптик Альхазен (Абу Али аль-Хасан ибн аль Хаитам 965—1038) нашел, что отношение между углами падения и преломления не остается постоянным при изменении угла падения, но он не смог дать верной формулировки. До него было около сотни публикаций; в одной из наиболее важной, переведенной на латинский язык в XII в. и опубликованной в 1572 г. под заглавием Opticae Thesaurus, теория греков, согласно которой глаз испускает лучи, впервые авторитетно отвергалась.

Правильная формулировка закона преломления была дана Виллебродом Снеллиусом (1591 — 1676), профессором математики в Лейдене, который установил экспериментально в 1620 г., что отношение косекансов углов падения и преломления постоянно, и выразил это в своей рукописи, которая получила некоторое распространение. Однако дальнейшие исторические исследования показывают, что закон преломления был открыт английским астрономом и математиком Томасом Херриотом (1560-1621) в Ислворте (Мидлсекс) около 1601 г. Кроме того, математик Абу Сайд аль-Ала в своей книге «О зажигательных инструментах» (написанной около 984 г.) устанавливал закон и рассчитывал с его помощью зажигательного стекла. Декарт в своей книге Dioptrique приводит современную формулировку закона, утверждая, что отношение между синусами углов падения и преломления равно скорости света во второй среде, деленной на скорость в первой (т.е. в среде, из которой выходит свет). Используя свою теорию света, в которой предполагалось наличие малых испускаемых частиц, он показывал, что закон преломления обусловлен изменением скоростей частиц при переходе их из одной среды в другую. Гюйгенс утверждает, что Декарт был знаком с рукописью Снеллиуса и использовал его результаты.

Хотя утверждение, что отношение синусов углов падения и преломления зависит от скоростей света в двух средах, справедливо, Декарт, используя законы механики к малым летящим частицам, которые по его представлению составляют свет, приходил к заключению, которое было неверным. Он считал, что для согласования с экспериментальными наблюдениями, а именно, что в более плотной среде свет отклоняется в меньшей степени, следует предположить, что в ней световые частицы движутся быстрее.

Во всяком случае его теория имела большой успех. Он дал математическое объяснение радуги, рассчитав отражение и преломление света в дождевых каплях, и это рассматривалось его современниками как изумительный результат. Радуга всегда рассматривалась как необъяснимый феномен, вплоть до того времени, когда архиепископ Сплита философ Марко Антонио де Домини (1560—1624) предположил, что этот феномен возможно связан с дождем и солнцем.

Теория света Декарта быстро заменила средневековые взгляды и способствовала новым знаниям. Однако попытки рационально объяснить природу и возникновение света привели к огромному противоречию в двух созданных и взаимно исключаемых теориях: волновой теории Гука и Гюйгенса, и корпускулярной теории, введенной Декартом и продолженной Ньютоном и его последователями.


ГЛАВА 1

ВОЛНОВАЯ И КОРПУСКУЛЯРНАЯ ТЕОРИИ СВЕТА

Людьми, которые сыграли центральную роль в истории теории света, были Гук, Гюйгенс и Ньютон. Гук и Ньютон были британцами, Гюйгенс — голландцем. Все они сделали замечательные вклады в различные области физики и установили основу современного понимания света, хотя и предложили противоречащие теории. Одна была основана на волновых представлениях, в то время как другая рассматривала свет, состоящим из малых частиц. Эти две теории, которые казались непримиримыми, вызвали яростные дискуссии и споры среди последователей и их сторонников. Были написаны лавины слов об этом споре; мы не станем глубоко вникать в него, но ограничимся наиболее важными фактами.


Роберт Гук

Роберт Гук родился во Фрешвотере на острове Уайт в 1635 г. и умер в Лондоне в 1703 г. Он был целеустремленным человеком, который придумал и построил ряд инструментов и устройств: мы обязаны ему, например, новейшим использованием спиральной пружины в балансном механизме часов, что позволило обеспечить точность хода. Он ввел закон пропорциональности между упругими деформациями и силой, который носит его имя, провел ряд астрономических наблюдений и претендовал на результаты некоторых работ Ньютона, касающихся открытия закона всемирного тяготения, о котором, правда, он лишь смутно догадывался.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.