История лазера - [7]
Физика Декарта
Открытие Кеплером трех законов движения планет указало на исключительную важность математики в изучении природы, и воодушевило Декарта, чьи исследования основывались на убеждении, что теоремы математики дают точность, определенность и универсальный подход, не доступные другим дисциплинам. Как следствие, Декарт основывал все свои построения на аксиоме, считая, что ясность и определенность являются отличительными чертами подлинного знания. Он начал с отрицания, что тела на расстоянии могут действовать друг на друга, утверждая, что они могут взаимодействовать только, когда они в контакте. Как следствие, пространство между Луной и Землей, и в более широком смысле, все пространство не может быть пустым, но частично заполнено некоторыми телами, подобно воздуху и материальным объектам. Промежутки между частицами, составляющие эти тела, а также остальное пространство предполагалось «физической средой», наполненной субстанцией, которая хотя и не поддается человеческим ощущением, способна передавать силу и воздействовать на тела, погруженные в нее. Эту среду он назвал «эфиром». Таким образом, термин эфир терял значение, данное античной греческой космологией, т.е. некий совершенный элемент, составляющий небесные сферы и тела. Декартовские частицы находятся в постоянном движении, образуя вихри, и свет является просто передачей давления, производимого на глаз движением этих вихрей. В своей книге Dioptrique ученый сравнил зрение с ощущением предмета, получаемого слепым человеком с помощью своей палки.
Основываясь на идее, что эффекты, производимые контактами и столкновениями, являются простейшими и наиболее понятными явлениями внешнего мира, он не нуждался в каких-либо других посредниках. Он не требовал, как мы делаем сегодня, чтобы его схема имела экспериментальное подтверждение, поскольку он больше верил в простоту и точность умозрений, чем в соответствие с наблюдаемыми фактами.
Его труды следует рассматривать как исключительно важные умозрительные попытки показать, что вся Вселенная и ее происхождение можно представить в виде логически согласованной механической схемы, которая зависит от немногих фундаментальных действий, и что полное понимание принципов ее действия можно полностью понять с помощью математики. Он стал родоначальником идеи механистической философии, согласно которой неодушевленный внешний мир может с научными целями рассматриваться, как автоматический механизм, и для каждого физического явления можно вообразить соответствующую механическую модель.
Подобная точка зрения не могла быть принята до Возрождения, когда было слишком мало — если и было — самодействующих механизмов, которые способны были работать без участия человека. Люди имели только некоторые инструменты, которые, чтобы работать, требовали умелого управления ими, и поэтому любое проявление регулярности понималось как результат действия некоторого разума. Уже античные греки верили, что порядок и гармония, наблюдаемые в движении небесных тел, основано на их душах, и многие явления получили абсурдные объяснения в аристотелевой философии. Например, падение тяжелого тела объяснялось предположением, что тяжелое вещество стремиться занять свое естественное место: центр Вселенной. Это объяснение стало неудовлетворительным, когда была принята коперниковская теория Солнечной системы, поскольку теперь Земля двигалась в бесконечном пространстве и нельзя было указать точку центра Вселенной. Революционным образом Декарт предположил, что космос можно рассматривать, как огромную машину и вследствие этого все происходящее в материальном мире можно предсказать с помощью математических вычислений.
Он пошел и дальше, утверждая, что физика, подобно геометрии Эвклида, может быть просто выведена из априорных принципов без какой бы то ни было необходимости наблюдений и экспериментов, т.е. на основе гносеологического рационализма. В этом убеждении он отступал от новых доктрин Бэкона и Галилея и подвергался даже критике Гюйгенсом.
По существу, создавая всеобъемлющую теорию Вселенной без необходимости изучения в деталях любого процесса, Декарт скорее продолжал традицию греков, чем следованию новым путям, проложенным Тихо Браге, Кеплером и в особенности Галилеем. Он никогда не держался принципа, что достоверное знание можно последовательно постигать путем терпеливого изучения природы, и его гипотеза, что сила может получаться только путем передачи через давление или удар, не давала возможности ему объяснить любую из сил, существующих в природе. Дефекты его методологии привели к тому, что менее чем за столетие почти все его теории были отвергнуты; однако его идеи стимулировали научную мысль на высочайшем уровне.
Закон преломления
В работе Dioptrique Декарт излагает свою теорию света, основанную на вихрях, и обсуждает законы отражения и преломления, впервые выразив принцип, что отношение углов падения и преломления зависит от среды, через которую проходит свет.
Уже греки знали, что если световой луч проходит из одной среды в другую, он частично отражается, а частично проходит через поверхность раздела двух этих сред (рис. 3). Каждый может выполнить эксперимент с куском стекла, освещаемым лучом света от окна. Часть солнечного света отражается от поверхности стекла, образуя пятно света, которое двигается по стене при движении стекла, а другая часть проходит сквозь стекло. Явление, при котором часть света проходит через стекло, называется преломлением (рефракция). Термин происходит от латинского слова refraction и отражает тот факт, что объект, который частично находится в одной среде, а частично — в другой (например, палка частично в воздухе, а частично в воде), кажется сломанным (на латыни refractus).

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.