История лазера - [67]
Зоммерфельд рассматривал проблему релятивистски и нашел, что энергия электрона зависит в этом случае также и от формы орбиты. Таким образом, вырождение снималось, и результат оказывался в согласии с экспериментальными наблюдениями, которые уже были проведены А. А. Майкельсоном, который обнаружил, что каждая линия водорода в серии Бальмера на самом деле представляет несколько очень тесно расположенных линий (тонкая структура). Этот факт не согласовывался с теорией Бора, но первоначально им пренебрегали из-за его исключительной малости.
Кроме того, был еще ряд эффектов, которые нужно было объяснить. Кроме эффекта Зеемана, который уже был нами обсужден, в 1913 г. Иоганн Штарк открыл в своей лаборатории в Технической Высшей Школе г. Аахена, что электрическое поле может расщеплять спектральные линии серии Бальмера на несколько компонент (линий), и это явление не ограничивается только водородом.
Иоганн Штарк (1874—1957) между 1906 г. и 1922 г. преподавал в университетах Гёттингена, Ганновера, Аахена, Грифсвальда и Вюрцбурга. На этом этапе его академическая карьера была прервана и он, несмотря на то, что получил Нобелевскую премию по физике в 1919 г. за его открытие, был отвергнут шестью германскими университетами. Он был непопулярен из-за своего антисемитизма, который привел его к отрицанию квантовых теорий и теории относительности Эйнштейна как порочный продукт «еврейской науки». Вступив в нацистскую партию в 1930 г. и будучи, отвергнут Прусской Академией наук, он в 1933 г. преуспел, став президентом Имперского Института Физики и Технологии. Здесь он старался использовать свою власть для того, чтобы усилить контроль над германской физикой, но вступил в конфликт с политиками и администраторами министерства образования Рейха. Они, решив, что он слишком деструктивен и ненадежен, вынудили его уйти в отставку в 1937 г. Окончательное унижение пришло в 1947 г., когда он был осужден к четырем годам принудительных работ Германским судом в процессе денацификации.
Воздействие электрического поля на спектральные линии было также независимо открыто во Флоренции Антонио Ло Сурдо (1880—1949). Из-за того, что его экспериментальная установка была намного проще, чем та, что использовалась Штарком, он получил лишь качественные результаты, не имея возможности провести точные измерения. Штарк сильно возражал против того, чтобы назвать открытие эффектом Штарка—Ло Сурдо, и не хотел оказывать Ло Сурдо какое-либо доверие.
Немедленно после этого открытия немецкий физик Эмиль Варбург (1846— 1931) и Бор представили в 1914 г. объяснение этого эффекта на основе модели атома Бора. Однако оно давало лишь качественное согласие с экспериментальными результатами, т.е. давало понимание, почему электрическое поле расщепляет энергетические уровни на несколько подуровней, но не давало точных значений этого расщепления.
В 1916 г., используя более тонкую модель эллиптических орбит, П. Дебай (1884—1966), нобелевский лауреат по химии 1936 г., и Зоммерфельд сумели дать объяснение нормальному эффекту Зеемана, однако аномальный эффект Зеемана все еще оставался загадкой. Эта проблема не была решенной, когда, примерно в 1920 г., Зоммерфельд предложил использовать эмпирическое объяснение, принимая во внимание экспериментальные данные. Он получал уровни энергий из частот наблюдаемых спектральных линий, находя затем квантовые числа, идентичные им. Это позволяло предсказать переходы с помощью подходящих правил отбора.
Следуя такой методологии, Зоммерфельд ввел новое квантовое число, которое он назвал внутренним квантовым числом. Позднее по предложению Бора его стали обозначать буквой j. Затем была разработана модель, названная векторной моделью, в которой число у представлялось суммой вектора углового момента электрона и углового момента остального атома, который создается ядром и остающимися электронами. Эти два момента складываются согласно сложным квантовым правилам.
Тем временем А. Ланде (1888—1975) стремился получать решение для аномального эффекта Зеемана, но привел ситуацию в непонятное состояние, когда он показал, что в некоторых случаях квантовые числа, связанные с магнитным поведением, могут иметь получисленные значения. Во всех этих, все еще непостижимых, исследованиях появилась идея, что орбита электрона обладает квантованным положением в пространстве. Таким образом, получила развитие идея пространственного квантования. Прямое подтверждение этому было дано в 1921 г. Отто Штерном (1888-1969) и Вальтером Герлахом (1889-1979).
Пространственное квантование
Отго Штерн после получения докторской степени в университете Бреслау в 1912 г. последовал за Эйнштейном в Прагу (1912) и в Цюрих (1912—1914). В 1914 г. он стал приват-доцентом университета Франкфурт-на-Майне. Во время Первой мировой войны он был солдатом. Его назначали профессором разных немецких университетов, в конце концов, в Гамбурге. Возвратившись с войны во Франкфурт, он посвятил себя разработке метода молекулярных пучков. В этом методе, который требует получения очень высокого вакуума, получается пучок свободно летящих молекул или атомов. Наиболее важным требованием является проведение эксперимента в исключительно чистых условиях, подобных тем идеальным условиям, которые предполагаются в теории. Штерн и его сотрудники изучили основные положения, относящиеся к кинетической теории газов, доказали пространственное квантование, измерили магнитный момент протона, проверили соотношение де Бройля для волн атомов гелия и др.
Говорят: история умеет хранить свои тайны. Справедливости ради добавим: способна она порой и проговариваться. И при всем стремлении, возникающем время от времени кое у кого, вытравить из нее нечто нежелательное, оно то и дело будет выглядывать наружу этими «проговорками» истории, порождая в людях вопросы и жажду дать на них ответ. Попробуем и мы пробиться сквозь бастионы одной величественной Тайны, пронзающей собою два десятка веков.
Эта книга для людей которым хочется лучше понять происходящее в нашем мире в последние годы. Для людей которые не хотят попасть в жернова 3-ей мировой войны из-за ошибок и амбиций политиков. Не хотят для своей страны судьбы Гитлеровской Германии или современной Украины. Она отражает взгляд автора на мировые события и не претендуют на абсолютную истину. Это попытка познакомить читателя с альтернативной мировой масс медиа точкой зрения. Довольно много фактов и объяснений автор взял из открытых источников.
"Ладога" - научно-популярный очерк об одном из крупнейших озер нашей страны. Происхождение и географические характеристики Ладожского озера, животный и растительный мир, некоторые проблемы экономики, города Приладожья и его достопримечательности - таковы вопросы, которые освещаются в книге. Издание рассчитано на широкий круг читателей.
О друзьях наших — деревьях и лесах — рассказывает автор в этой книге. Вместе с ним читатель поплывет на лодке по Днепру и увидит дуб Тараса Шевченко, познакомится со степными лесами Украины и побывает в лесах Подмосковья, окажется под зеленым сводом вековечной тайги и узнает жизнь городских парков, пересечет Белое море и даже попадет в лесной пожар. Путешествуя с автором, читатель побывает у лесорубов и на плотах проплывет всю Мезень. А там, где упал когда-то Тунгусский метеорит, подивится чуду, над разгадкой которого ученые до сих пор ломают головы.
Книга известного английского писателя Г. Дж. Уэллса является, по сути, уникальным проектом: она читается как роман, но роман, дающий обобщенный обзор всемирной истории, без усложнений и спорных вопросов.
Давайте совершим путешествие вместе с наукой в далёкое прошлое, чтобы прийти к тому времени, когда зарождалась жизнь на Земле, и узнать, как это совершалось. От такого путешествия станет крепче уверенность в силе науки, в силе человеческого разума, в нашей собственной силе.