История лазера - [116]
Сорокин решил начать с первого эксперимента, посылая пучок рубинового лазера через образец. Исследовав спектр, испускаемый образцом, он убедился, что успешен второй эксперимент[12]. Поместив образец красителя между двумя зеркалами, Сорокин и Ланкард получили мощный лазерный пучок на длине волны 7555 А°. Они испробовали другие красители и убедились, что это общий эффект. Они перепробовали все красители, какие смогли достать. В один из дней Сорокин проходил через лабораторию, спрашивая коллег: «Какой цвет вы желаете?», так как многие длины волн можно было получать, заменяя краситель. Одно обстоятельство, которое они упустили, заключалось в том, что этот новый лазер мог быть перестраиваемым, т.е. испускать длину волны, варьируемой в значительном диапазоне, используя один и тот же материал.
В этих исследованиях у них были предшественники. В 1961 г. два русских ученых С.Г. Раутиан и И.И. Собельман провели теоретическое рассмотрение[13], а в 1964 г. Д.Л. Штокман с сотрудниками сделали эксперименты, в которых были получены некоторые указания на возможный лазерный эффект в ароматических молекулах перилена с накачкой импульсной лампой.
Немного позднее и независимо Фриц Шэфер, который тогда работал в университете Марбурга (Германия), изучая характеристики насыщения некоторых органических красителей семейства цианинов, получил такой же эффект. Он изучал свет, испускаемый красителем, накачиваемым мощным рубиновым лазером с модуляцией добротности. Его студент Волце, исследуя спектры растворов с высокой концентрацией получил сигналы в тысячи раз сильнее, чем ожидалось. Вскоре оба исследователя поняли, что они имеют дело с лазерным эффектом. Вместе с аспирантом Шмидтом они сняли спектры при разных концентрациях, и впервые показали, что можно построить лазер, перестраиваемый по длинам волн в пределах 600 А°, изменяя концентрацию или отражения зеркал резонатора. Вскоре этот результат был распространен на десяток разных красителей семейства цианинов. Возник целый поток результатов в этой области, и в тысячах красителей был получен лазерный эффект. Наконец, в 1969 г. Б. Снэвли и Шэфер показали возможность непрерывной генерации с использованием накачки аргоновым лазером раствора родамина: 6Ж.
Эти лазеры осуществили долго вынашиваемую мечту — получить лазер, легко перестраиваемый в широком диапазоне частот. Лазер, перестраиваемый на требуемую длину волны, наконец-то родился! Красители интересны в качестве рабочих сред лазеров и по другим причинам. Подбором красителя, растворителя, концентрации и толщиной кюветы легко получить лазер, генерирующий на нужной длине волны. Охлаждение активной среды, требуемое в любом лазере, легко достигается прокачкой раствора. Более того, в жидкости не возникают необратимые повреждения, характерные для твердотельных сред.
В середине 1967 г. Б. Соффер и Б. МакФаллан заменили одно из зеркал резонатора отражающей дифракционной решеткой и получили лазер, плавно перестраиваемый по длинам волн в области более 400 А простым поворотом решетки.
Лазеры на красителях в настоящее время позволяют получать лазерное излучение на любой длине волны, от ближнего ИК-диапазона до ультрафиолета. Благодаря тому, что лазеры на красителях имеют чрезвычайно широкие полосы усиления, они позволяют осуществлять режим генерации импульсов длительностью менее пикосекунды (10>—12 с).
Лазерные диоды
Полупроводниковые или диодные лазеры очень важны для многих применений. В них используются не уровни, а энергетические состояния нелокализованных электронов. В твердых телах энергетические уровни электронов группируются в зоны. При температуре абсолютного нуля в полупроводниках, все имеющиеся уровни заполняют одну зону (валентная зона), а последующие свободные уровни группируются в другой зоне (зона проводимости), которая совершенно не заполнена и отделена от валентной зоны некоторым промежутком энергий, для которых нет состояний. Этот интервал называется запрещенной зоной (энергетической щелью). В этих условиях материал не может проводить ток и является изолятором. Когда температура увеличивается и если зона проводимости расположена от валентной зоны не слишком высоко, термическое возбуждение достаточно, чтобы некоторые из электронов перескочили в зону проводимости. Поскольку там все уровни пустые, они способны обеспечить электрический ток. Однако из-за того, что их мало, величина тока невелика. Соответственно материал становится проводящим с плохой проводимостью, т.е. полупроводником. Электроны, которые способны поддерживать ток в зоне проводимости, оставляют вакантными состояния в валентной зоне. Эти вакантные состояния, которые называются дырками, ведут себя как положительно заряженные частицы и также участвуют в проводимости. В чистом полупроводнике термическое возбуждение производит электроны в зоне проводимости и дырки в валентной зоне в равных количествах.
Электроны и дырки, способные поддерживать ток, называются носителями. Если по какой-либо причине в зоне проводимости оказывается больше электронов, чем следует по статистике Максвелла-Больцмана, избыток электронов падает на вакантные энергетические уровни валентной зоны и таким образом возвращается в валентную зону и там исчезает дырка. То же самое происходит, если, наоборот, больше дырок присутствует в валентной зоне, чем допускается данной температурой. Этот процесс называется рекомбинацией двух носителей. Он происходит, давая энергию, соответствующую величине интервала между двумя зонами, которая проявляется либо в виде механических колебаний решетки, либо в виде испускания фотона. В последнем случае переход называется излучательным, а энергия фотона соответствует разности энергий уровней в валентной зоне и в зоне проводимости, т.е., грубо говоря, равной энергии запрещенной зоны.
Говорят: история умеет хранить свои тайны. Справедливости ради добавим: способна она порой и проговариваться. И при всем стремлении, возникающем время от времени кое у кого, вытравить из нее нечто нежелательное, оно то и дело будет выглядывать наружу этими «проговорками» истории, порождая в людях вопросы и жажду дать на них ответ. Попробуем и мы пробиться сквозь бастионы одной величественной Тайны, пронзающей собою два десятка веков.
Эта книга для людей которым хочется лучше понять происходящее в нашем мире в последние годы. Для людей которые не хотят попасть в жернова 3-ей мировой войны из-за ошибок и амбиций политиков. Не хотят для своей страны судьбы Гитлеровской Германии или современной Украины. Она отражает взгляд автора на мировые события и не претендуют на абсолютную истину. Это попытка познакомить читателя с альтернативной мировой масс медиа точкой зрения. Довольно много фактов и объяснений автор взял из открытых источников.
"Ладога" - научно-популярный очерк об одном из крупнейших озер нашей страны. Происхождение и географические характеристики Ладожского озера, животный и растительный мир, некоторые проблемы экономики, города Приладожья и его достопримечательности - таковы вопросы, которые освещаются в книге. Издание рассчитано на широкий круг читателей.
О друзьях наших — деревьях и лесах — рассказывает автор в этой книге. Вместе с ним читатель поплывет на лодке по Днепру и увидит дуб Тараса Шевченко, познакомится со степными лесами Украины и побывает в лесах Подмосковья, окажется под зеленым сводом вековечной тайги и узнает жизнь городских парков, пересечет Белое море и даже попадет в лесной пожар. Путешествуя с автором, читатель побывает у лесорубов и на плотах проплывет всю Мезень. А там, где упал когда-то Тунгусский метеорит, подивится чуду, над разгадкой которого ученые до сих пор ломают головы.
Даниэль Клугер написал захватывающую книгу о прототипах известных литературных героев — спорную, но чрезвычайно интересную. Выбор его персонажей широк — капитан Немо и Беня Крик, граф Дракула и Эркюль Пуаро, барон Мюнхгаузен и доктор Фауст, Голем и Эдмон Дантес, гражданин Корейко и доктор Блад… Собрав их биографии — и биографии их прототипов — под одной обложкой и более того — в едином тексте, Клугер попутно сумел рассказать много чего любопытного. «Тайна капитана Немо» — это своеобразное литературное расследование, в котором читатели участвует вместе с автором.
Книга известного английского писателя Г. Дж. Уэллса является, по сути, уникальным проектом: она читается как роман, но роман, дающий обобщенный обзор всемирной истории, без усложнений и спорных вопросов.