Истина и красота: Всемирная история симметрии - [55]
Глава 8
Посредственный инженер и трансцендентный профессор
Симметрия перестала быть туманным ощущением скрытого порядка или художественным восприятием изящества и красоты. Она превратилась в ясную математическую концепцию со строгим логическим определением. Появилась возможность вычислять симметрии и доказывать о них теоремы. Родился новый предмет — теория групп. Погоня человечества за симметрией достигла поворотной точки. В качестве платы за вход в сообщество посвященных требовалась готовность мыслить более концептуально. Концепция группы носила абстрактный характер, на несколько шагов удаленный от традиционного «простого продукта», состоящего из чисел и геометрических форм.
Группы уже доказали, чего они стоят, когда была решена вековая загадка — вопрос о разрешимости уравнений пятой степени. Вскоре стало ясно, что тот же круг идей позволяет разобраться и с несколькими другими задачами, неразрешимыми в течение веков. При этом не всегда привлекалась именно теория групп как таковая — порой требовалось рассуждать так, как рассуждали Абель, Галуа и их последователи. И даже когда казалось, что группы не используются, они на самом деле находились совсем рядом, под самой поверхностью вещей.
Среди нерешенных задач, доставшихся потомкам в наследство от греческих геометров, три приобрели вызывающую известность — задача о трисекции угла, задача об удвоении куба и задача о квадратуре круга. Даже сегодня трисекция угла и квадратура круга привлекают к себе внимание многочисленных любителей, которые, по-видимому, не вполне охватили своим умом то обстоятельство, что когда математики говорят «невозможно», то именно это и имеется в виду. Удвоение куба несколько отстает по уровню популярности.
Об этих трех задачах часто говорят как о «трех задачах Античности», но такое определение создает преувеличенное представление об их важности. Из-за него они как будто стоят в одном ряду с главнейшими загадками в истории, такими как Последняя теорема Ферма, на которую не удавалось дать ответ в течение более 350 лет. Однако отличие здесь в том, что все ясно сознавали: Последняя теорема Ферма — нерешенная задача, причем можно конкретно указать, когда именно она была впервые поставлена в математической литературе. Все математики были в курсе относительно не только самой задачи, но и предполагаемого ответа, а также относительно того, кто первым поставил этот вопрос.
Греческие задачи — иные. Их не найти у Эвклида в перечне нерешенных, требующих внимания задач. Они существовали главным образом по умолчанию, как очевидные попытки обобщить полученные ранее успешные результаты, но почему-то Эвклид предпочитал их не упоминать. Почему? Потому что никто не знал, как взяться за их решение. Приходило ли грекам на ум, что они могут вовсе не иметь решения? Если и так, то никто не поднимал по этому поводу шума. Без сомнения, таким людям как Архимед приходило в голову, что эти задачи невозможно решить, используя циркуль и линейку, поскольку он разработал альтернативные методы, однако нет никаких свидетельств, что сам по себе вопрос о возможности построения представлялся Архимеду важным.
Этот вопрос приобрел важность позднее. Отсутствие решений этих задач свидетельствовало о серьезных пробелах в достигнутом человечеством понимании геометрии и алгебры; они вошли в моду как «фольклорные» задачи, известные профессионалам через некое подобие культурного осмоса. К тому времени как было получено их решение, они приобрели ауру исторической и математической значительности. Их решение воспринималось как важнейший прорыв — в особенности это касалось квадратуры круга. И ответ во всех трех случаях был один и тот же: «невозможно». Невозможно с использованием традиционных инструментов — циркуля и линейки.
Такая ситуация может показаться достаточно негативной. На протяжении большей части жизни люди решают проблемы и преодолевают трудности с помощью самых разнообразных средств, какие только подворачиваются под руку. Если высокое здание нельзя построить из кирпича и раствора, инженеры используют стальную арматуру и железобетон. Никто не стяжал себе славы доказательством того, что кирпичи не подходят для данной стройки.
Математика устроена несколько иначе. Ограничения, присущие используемым инструментам, часто так же важны, как и успехи в их применении. Важность математического вопроса часто зависит не от ответа как такового, а от того, почему ответ оказывается правильным. Так обстояло дело и с тремя задачами Античности.
Гроза всех и вся трисекторов родился в Париже в 1814 году, а звали его Пьер Лоран Ванцель. Отец его был сначала армейским офицером, а потом профессором прикладной математики в Специальной коммерческой школе. Пьер опережал в своем развитии других детей; Адемар Жан Клод Барр де Сен-Венан, который знал Ванцеля, писал, что мальчик демонстрировал «потрясающие способности к математике — предмету, о котором он читает с огромным интересом. Вскоре он превзошел даже своего учителя, который обращался за помощью к девятилетнему Ванцелю, когда испытывал трудности при решении задач».
Важно не только читать хорошие книги, но и писать таковые… Из-за нарушения этого правила волшебники Незримого университета вынуждены вновь спасать несчастную вселенную Круглого мира.XIX век, Англия. Некий человек по имени Чарльз Дарвин пишет книгу «Теология видов», которая не только становится бестселлером, но и тормозит научный прогресс более чем на век, что неизбежно вызовет новый ледниковый период в ближайшие столетия. Ну и как тут не вмешаться аркканцлеру Чудакулли и его коллегам?Третья книга научно-популярного цикла, созданного Терри Пратчеттом в соавторстве с Йеном Стюартом и Джеком Коэном, рассказывает читателю о теории эволюции и ее влиянии на развитие всего человечества.Впервые на русском языке!
Добро пожаловать в XXIII век!В эпоху, когда человечество наконец-то «освоилось» в Солнечной системе.На юпитерианскую луну Каллисто, где космоархеологи нашли погребенное под многотысячелетними слоями льдов… устройство? Или все-таки СУЩЕСТВО?То, что привезли на Землю. То, что однажды… включилось? Или все-таки – ожило?И тогда гигантская комета, летевшая к Юпитеру, вдруг изменила свою траекторию – и понеслась к Земле…Что это – нелепое стечение обстоятельств? Неизвестный космический фактор? Или – непреложное доказательство существования на Юпитере разумной жизни?И теперь космический флот Земли отправляется к Юпитеру…
Закономерности простых чисел и теорема Ферма, гипотеза Пуанкаре и сферическая симметрия Кеплера, загадка числа π и орбитальный хаос в небесной механике. Многие из нас лишь краем уха слышали о таинственных и непостижимых загадках современной математики. Между тем, как ни парадоксально, фундаментальная цель этой науки — раскрывать внутреннюю простоту самых сложных вопросов. Английский математик и популяризатор науки, профессор Иэн Стюарт, помогает читателю преодолеть психологический барьер. Увлекательно и доступно он рассказывает о самых трудных задачах, над которыми бились и продолжают биться величайшие умы, об истоках таких проблем, о том, почему они так важны и какое место занимают в общем контексте математики и естественных наук.
Книга «Часы Дарвина» повествует о викторианском обществе, которого никогда не было — ну, однажды вмешались волшебники и его не стало..
В двух мирах – Плоском и Круглом – вновь переполох! Омниане узнали о Круглом мире и хотят его контролировать. Само его существование – это издевательство над их религией. Однако волшебники Незримого университета придерживаются совсем другой точки зрения. В конце концов, они создали этот мир!В четвертой книге цикла «Наука Плоского мира» Терри Пратчетт, профессор Йен Стюарт и доктор Джек Коэн создают мозгодробительную смесь литературы, ультрасовременной науки и философии в попытке ответить на ДЕЙСТВИТЕЛЬНО большие вопросы – на этот раз о Боге, Вселенной и, честно говоря, Обо Всем.Впервые на русском языке!
Как математические модели объясняют космос? Иэн Стюарт, лауреат нескольких премий за популяризацию науки, представляет захватывающее руководство по механике космоса в пределах от нашей Солнечной системы и до всей Вселенной. Он описывает архитектуру пространства и времени, темную материю и темную энергию, рассказывает, как сформировались галактики и почему взрываются звезды, как все началось и чем все это может закончиться. Он обсуждает параллельные вселенные, проблему тонкой настройки космоса, которая позволяет жить в нем, какие формы может принимать внеземная жизнь и с какой вероятностью наша земная может быть сметена ударом астероида. «Математика космоса» — это волнующий и захватывающий математический квест на деталях внутреннего мира астрономии и космологии. Издание подготовлено в партнерстве с Фондом некоммерческих инициатив «Траектория».
Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…
«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)
Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Тим Глинн-Джонс — автор этой необычной книги — знает о цифрах все. Вы убедитесь в этом, прочитав его занимательные истории «от нуля до бесконечности». С их помощью вы перестанете опасаться числа 13, разберетесь, какую страшную тайну хранит в себе число 666, узнаете, чем отличается американский миллиард от европейского и почему такие понятия как Время, Вселенная и Смерть, можно определить только через бесконечность.