Истина и красота: Всемирная история симметрии - [45]
К сожалению, он был также чрезвычайно занят. Имеется широко распространенный миф, что Коши потерял рукопись Галуа; некоторые источники предполагают, что он выбросил ее в припадке уязвленного самолюбия. Истина представляется более прозаической. Имеется письмо, направленное Коши в Академию, датированное 18 января 1830 года, в котором он извиняется за непредставленный отзыв о работе «молодого Галоа»[26], объясняет, что «страдал недомоганием и не выходил из дома», а также упоминает свой собственный мемуар.
Это письмо сообщает нам несколько вещей. Во-первых, Коши не выбросил рукопись Галуа — через шесть месяцев после того, как она была отправлена, она все еще оставалась у Коши. Во-вторых, Коши, по-видимому, прочитал рукопись и решил, что она достаточно важна для привлечения к ней внимания Академии.
Однако когда Коши появился на следующем собрании Академии, он представил одну только свою статью. Что же случилось с рукописью Галуа?
Французский историк Рене Татон привел аргументы в пользу того, что идеи Галуа произвели на Коши впечатление — быть может, даже чересчур сильное. Поэтому вместо того, чтобы огласить его работу в Академии, как исходно планировалось, он посоветовал Галуа написать более развернутое и, предположительно, существенно улучшенное изложение теории, чтобы подать его на соискание премии — гран-при по математике. Получение этой премии было высочайшим отличием. В поддержку этого утверждения нет документальных свидетельств, но известно, что в феврале 1830 года Галуа отправил такой мемуар на соискание гран-при.
Невозможно точно сказать, что было в этом документе, но в общих чертах о его содержании можно судить из сохранившихся заметок самого Галуа. Ясно, что история могла бы оказаться совсем другой, если бы далекоидущие следствия из этой работы были оценены в полной мере. Вместо этого рукопись просто исчезла.
Одно возможное объяснение появилось в 1831 году в The Globe — журнале, основанном Сен-Симоном и издаваемом его последователями, принадлежавшими к неохристианскому социалистическому движению. В The Globe рассказывалось о судебном заседании, на котором Галуа обвинялся в том, что публично угрожал жизни короля. Кроме того, там говорилось, что «этот мемуар… заслуживал премии, поскольку позволял разрешить некоторые сложности, с которыми не смог справиться Лагранж. Коши в максимально высокой степени отозвался об авторе по поводу данного предмета. И что же? Мемуар потерян, а присуждение премии прошло без участия молодого ученого».
Большая проблема здесь состоит в том, чтобы оценить фактологические основания данной статьи. Коши бежал из страны в сентябре 1830 года, спасаясь от излишнего внимания к себе со стороны революционеров-антиинтеллектуалов, так что статья не может быть основана на его словах. Дело выглядит так, будто источником статьи был сам Галуа. У него был близкий друг Огюст Шевалье, ранее приглашавший его вступить в коммуну, которую образовали последователи Сен-Симона. Весьма вероятно, что Шевалье был репортером — сам Галуа в тот момент был занят другим делом, а именно — его привлекли к суду, где ставкой была его жизнь, — а раз так, то история должна была исходить от Галуа. Или он целиком ее выдумал, или Коши еще до этого действительно хвалил его работу.
Вернемся в 1829 год. На математическом фронте Галуа испытывает растущее разочарование, поскольку от математического сообщества, по-видимому, не приходится ждать признания, к которому он так стремился. Тогда же начала рушиться и его частная жизнь.
Дела в деревне Бург-ля-Рен шли не лучшим образом. Мэр — Николя, отец нашего Галуа — оказался замешан в грязном политическом скандале, который привел в ярость деревенского священника. Священник предпринял намеренно немилосердный шаг — распространил злобные замечания о родственниках Николя и подделал на них его подпись. В отчаянии Николя покончил с собой, повесившись.
Эта трагедия разыгралась всего за несколько дней до вступительных экзаменов в Политехническую школу — последней возможности для Галуа туда поступить. Все прошло неудачно. По некоторым рассказам, Галуа бросил в лицо экзаменатору тряпку для стирания с доски — и даже если это в самом деле была тряпка, а не деревяшка, служащая той же цели, это вряд ли произвело на экзаменатора благоприятное впечатление. В 1899 году Ж. Бертран привел некоторые подробности, из которых следовало, что Галуа был не готов к вопросу, который ему задали, из-за чего просто потерял самообладание.
По той или иной причине Галуа провалился на вступительных экзаменах и попал в тяжелейшее положение. Поскольку он был абсолютно уверен, что поступит, — похоже, он и в самом деле был весьма заносчив — он не озаботился подготовиться к вступительным экзаменам в единственное альтернативное учебное заведение — Приготовительную школу. В наши дни это учреждение, переименованное в Нормальную школу («Эколь Нормаль»), считается более престижным, чем Политехническая школа, но тогда оно занимало непочетное второе место. Галуа в спешке зазубрил необходимый материал, триумфально прошел по математике и физике, путался на экзамене по литературе, но был в итоге принят. Он получил диплом как по естественным, так и по гуманитарным дисциплинам в конце 1829 года.
Важно не только читать хорошие книги, но и писать таковые… Из-за нарушения этого правила волшебники Незримого университета вынуждены вновь спасать несчастную вселенную Круглого мира.XIX век, Англия. Некий человек по имени Чарльз Дарвин пишет книгу «Теология видов», которая не только становится бестселлером, но и тормозит научный прогресс более чем на век, что неизбежно вызовет новый ледниковый период в ближайшие столетия. Ну и как тут не вмешаться аркканцлеру Чудакулли и его коллегам?Третья книга научно-популярного цикла, созданного Терри Пратчеттом в соавторстве с Йеном Стюартом и Джеком Коэном, рассказывает читателю о теории эволюции и ее влиянии на развитие всего человечества.Впервые на русском языке!
Добро пожаловать в XXIII век!В эпоху, когда человечество наконец-то «освоилось» в Солнечной системе.На юпитерианскую луну Каллисто, где космоархеологи нашли погребенное под многотысячелетними слоями льдов… устройство? Или все-таки СУЩЕСТВО?То, что привезли на Землю. То, что однажды… включилось? Или все-таки – ожило?И тогда гигантская комета, летевшая к Юпитеру, вдруг изменила свою траекторию – и понеслась к Земле…Что это – нелепое стечение обстоятельств? Неизвестный космический фактор? Или – непреложное доказательство существования на Юпитере разумной жизни?И теперь космический флот Земли отправляется к Юпитеру…
Закономерности простых чисел и теорема Ферма, гипотеза Пуанкаре и сферическая симметрия Кеплера, загадка числа π и орбитальный хаос в небесной механике. Многие из нас лишь краем уха слышали о таинственных и непостижимых загадках современной математики. Между тем, как ни парадоксально, фундаментальная цель этой науки — раскрывать внутреннюю простоту самых сложных вопросов. Английский математик и популяризатор науки, профессор Иэн Стюарт, помогает читателю преодолеть психологический барьер. Увлекательно и доступно он рассказывает о самых трудных задачах, над которыми бились и продолжают биться величайшие умы, об истоках таких проблем, о том, почему они так важны и какое место занимают в общем контексте математики и естественных наук.
В двух мирах – Плоском и Круглом – вновь переполох! Омниане узнали о Круглом мире и хотят его контролировать. Само его существование – это издевательство над их религией. Однако волшебники Незримого университета придерживаются совсем другой точки зрения. В конце концов, они создали этот мир!В четвертой книге цикла «Наука Плоского мира» Терри Пратчетт, профессор Йен Стюарт и доктор Джек Коэн создают мозгодробительную смесь литературы, ультрасовременной науки и философии в попытке ответить на ДЕЙСТВИТЕЛЬНО большие вопросы – на этот раз о Боге, Вселенной и, честно говоря, Обо Всем.Впервые на русском языке!
Когда магический эксперимент выходит из-под контроля, волшебники Незримого Университета случайно создают новую Вселенную. Внутри они обнаруживают планету, которую называют Круглым Миром. Круглый Мир — это удивительное место, где логика берет верх над волшебством и здравым смыслом.Как Вы уже, наверное догадались, это наша Вселенная, а Круглый Мир — это Земля. Вместе с волшебниками, наблюдающими за развитием своего случайного творения, мы проследим историю Вселенной, начиная с исходной сингулярности Большого Взрыва и заканчивая эволюцией жизни на Земле и за ее пределами.Переплетая оригинальный рассказ Терри Пратчетта с главами, написанными Джеком Коэном и Йеном Стюартом, книга дает замечательную возможность посмотреть на нашу Вселенную глазами волшебников.
Как математические модели объясняют космос? Иэн Стюарт, лауреат нескольких премий за популяризацию науки, представляет захватывающее руководство по механике космоса в пределах от нашей Солнечной системы и до всей Вселенной. Он описывает архитектуру пространства и времени, темную материю и темную энергию, рассказывает, как сформировались галактики и почему взрываются звезды, как все началось и чем все это может закончиться. Он обсуждает параллельные вселенные, проблему тонкой настройки космоса, которая позволяет жить в нем, какие формы может принимать внеземная жизнь и с какой вероятностью наша земная может быть сметена ударом астероида. «Математика космоса» — это волнующий и захватывающий математический квест на деталях внутреннего мира астрономии и космологии. Издание подготовлено в партнерстве с Фондом некоммерческих инициатив «Траектория».
Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)
Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.
Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.