Истина и красота: Всемирная история симметрии - [122]

Шрифт
Интервал

Имеется также тривиальная формула произведения для суммы одного квадрата — т.е. просто для квадрата. Она имеет вид x>2y>2 = (xy)>2. Эта формула является для вещественных чисел тем же, чем формула двух квадратов для комплексных: она показывает, что норма мультипликативна, т.е. норма произведения равна произведению норм. Здесь, как и выше, норма есть квадрат расстояния от числа до начала координат. Число, противоположное любому положительному числу, имеет ту же норму, что и это положительное.

А что насчет формулы для четырех квадратов? Она утверждает то же самое для кватернионов. Четырехмерный аналог теоремы Пифагора (да, есть такая штука!) говорит нам, что кватернион общего вида x + iу + jz + kw имеет норму x>2 + y>2 + z>2 + w>2, а это есть сумма четырех квадратов. Кватернионная норма также мультипликативна, и этим объясняется формула Лагранжа для четырех квадратов.

Вы, наверное, меня уже опередили. Формула Дегена для восьми квадратов имеет аналогичную интерпретацию в терминах октонионов. Октонионная норма мультипликативна.

Здесь происходит что-то весьма любопытное. У нас имеется четыре типа последовательно усложняющихся числовых систем: вещественные, комплексные, кватернионы и октонионы. Их размерности равны 1, 2, 4 и 8. Имеются формулы, утверждающие, что сумма квадратов, умноженная на сумму квадратов, есть сумма квадратов, и эти формулы применимы к 1, 2, 4 или 8 квадратам. Эти формулы тесно связаны с соответствующими числовыми системами. Но еще более интригующей является сама последовательность чисел, которые здесь появляются: 1, 2, 4, 8 — что дальше?


Если продолжить последовательность, то весьма разумно было бы ожидать, что мы найдем интересную 16-мерную числовую систему. Действительно, такую систему можно построить естественным путем, называемым процессом Кэли-Диксона. Если применить этот процесс к вещественным числам, то получаются комплексные. Применение к комплексным дает кватернионы. Применение к кватернионам — октонионы. И если теперь двинуться дальше и применить его к октонионам, получатся седенионы — 16-мерная числовая система, а затем алгебры размерности 32, 64 и так далее (на каждом шаге размерность удваивается).

Что же, существует формула для 16 квадратов?

Нет. Норма седенионов не мультипликативна. Формулы произведения для сумм квадратов существуют только тогда, когда квадратов в них 1, 2, 4 или 8. Закон малых чисел снова проявил себя: то, что выглядело как последовательность степеней, стопорится.

Почему? По сути, потому что процесс Кэли-Диксона постепенно разрушает законы алгебры. Всякий раз, как он применяется, получающаяся система ведет себя в чем-то не так хорошо, как предыдущая. Шаг за шагом, закон за законом — и изящные вещественные числа погружаются в анархию. Подробности этого таковы.

Наши четыре числовые системы имеют и другие общие свойства, помимо нормированности. Наиболее впечатляющее — из-за которого они и попадают в класс обобщений вещественных чисел — состоит в том, что это «алгебры с делением». Имеется много алгебраических систем, к которым применимы понятия сложения, вычитания и умножения. Но в наших четырех системах можно, кроме того, делить. Существование мультипликативной нормы делает их «нормированными алгебрами с делением». В течение некоторого времени Грейвс полагал, что его метод перехода от 4 к 8 можно будет повторить, что приведет к нормированным алгебрам с делением размерностей 16, 32, 64 — всех степеней двойки. Но он наткнулся на препятствие с седенионами и начал сомневаться, действительно ли существует 16-мерная нормированная алгебра с делением. Он был прав: нам теперь известно, что существуют только четыре нормированные алгебры с делением, и они имеют размерности 1, 2, 4 и 8. Нет формулы для 16 квадратов, подобной формуле Грейвса для восьми квадратов или формуле Эйлера для четырех квадратов.

Почему? На каждом шаге вдоль по цепочке из степеней двойки новая числовая система теряет некоторую часть структуры. Комплексные числа не упорядочены вдоль прямой. Кватернионы не подчиняются алгебраическому правилу ab = ba — закону коммутативности. Октонионы не подчиняются закону ассоциативности (ab)c = a(bc), хотя и удовлетворяют закону альтернативности (ab)a = a(ba). Седенионы не образуют алгебру с делением и не имеют мультипликативной нормы.

Все это носит намного более фундаментальный характер, чем просто факт «отказа» в процессе Кэли-Диксона. В 1898 году Гурвиц доказал, что единственные нормированные алгебры с делением — это четыре наших старых друга. В 1930 году Макс Цорн доказал, что те же четыре алгебры являются единственными альтернативными алгебрами с делением. Они поистине исключительны.

Происходящее — из разряда тех вещей, которые нравятся чистым математикам с их платоническими пристрастиями. Но единственными по-настоящему важными для остального человечества случаями являются, по-видимому, вещественные и комплексные числа, которые имеют широкие практические применения. Кватернионы проявили себя в ряде полезных, пусть даже эзотерических приложений, но октонионы не попадали в свет рампы прикладной науки. Они, казалось, являют собой некий тупик чистой математики, подобие претенциозной интеллектуальной чепухи, которой и следует ожидать от людей, витающих в облаках.


Еще от автора Йэн Стюарт
Наука Плоского мира. Книга 3. Часы Дарвина

Важно не только читать хорошие книги, но и писать таковые… Из-за нарушения этого правила волшебники Незримого университета вынуждены вновь спасать несчастную вселенную Круглого мира.XIX век, Англия. Некий человек по имени Чарльз Дарвин пишет книгу «Теология видов», которая не только становится бестселлером, но и тормозит научный прогресс более чем на век, что неизбежно вызовет новый ледниковый период в ближайшие столетия. Ну и как тут не вмешаться аркканцлеру Чудакулли и его коллегам?Третья книга научно-популярного цикла, созданного Терри Пратчеттом в соавторстве с Йеном Стюартом и Джеком Коэном, рассказывает читателю о теории эволюции и ее влиянии на развитие всего человечества.Впервые на русском языке!


Колесники

Добро пожаловать в XXIII век!В эпоху, когда человечество наконец-то «освоилось» в Солнечной системе.На юпитерианскую луну Каллисто, где космоархеологи нашли погребенное под многотысячелетними слоями льдов… устройство? Или все-таки СУЩЕСТВО?То, что привезли на Землю. То, что однажды… включилось? Или все-таки – ожило?И тогда гигантская комета, летевшая к Юпитеру, вдруг изменила свою траекторию – и понеслась к Земле…Что это – нелепое стечение обстоятельств? Неизвестный космический фактор? Или – непреложное доказательство существования на Юпитере разумной жизни?И теперь космический флот Земли отправляется к Юпитеру…


Величайшие математические задачи

Закономерности простых чисел и теорема Ферма, гипотеза Пуанкаре и сферическая симметрия Кеплера, загадка числа π и орбитальный хаос в небесной механике. Многие из нас лишь краем уха слышали о таинственных и непостижимых загадках современной математики. Между тем, как ни парадоксально, фундаментальная цель этой науки — раскрывать внутреннюю простоту самых сложных вопросов. Английский математик и популяризатор науки, профессор Иэн Стюарт, помогает читателю преодолеть психологический барьер. Увлекательно и доступно он рассказывает о самых трудных задачах, над которыми бились и продолжают биться величайшие умы, об истоках таких проблем, о том, почему они так важны и какое место занимают в общем контексте математики и естественных наук.


Наука Плоского мира. Книга 4. День Страшного Суда

В двух мирах – Плоском и Круглом – вновь переполох! Омниане узнали о Круглом мире и хотят его контролировать. Само его существование – это издевательство над их религией. Однако волшебники Незримого университета придерживаются совсем другой точки зрения. В конце концов, они создали этот мир!В четвертой книге цикла «Наука Плоского мира» Терри Пратчетт, профессор Йен Стюарт и доктор Джек Коэн создают мозгодробительную смесь литературы, ультрасовременной науки и философии в попытке ответить на ДЕЙСТВИТЕЛЬНО большие вопросы – на этот раз о Боге, Вселенной и, честно говоря, Обо Всем.Впервые на русском языке!


Наука Плоского Мира

Когда магический эксперимент выходит из-под контроля, волшебники Незримого Университета случайно создают новую Вселенную. Внутри они обнаруживают планету, которую называют Круглым Миром. Круглый Мир — это удивительное место, где логика берет верх над волшебством и здравым смыслом.Как Вы уже, наверное догадались, это наша Вселенная, а Круглый Мир — это Земля. Вместе с волшебниками, наблюдающими за развитием своего случайного творения, мы проследим историю Вселенной, начиная с исходной сингулярности Большого Взрыва и заканчивая эволюцией жизни на Земле и за ее пределами.Переплетая оригинальный рассказ Терри Пратчетта с главами, написанными Джеком Коэном и Йеном Стюартом, книга дает замечательную возможность посмотреть на нашу Вселенную глазами волшебников.


Математика космоса

Как математические модели объясняют космос? Иэн Стюарт, лауреат нескольких премий за популяризацию науки, представляет захватывающее руководство по механике космоса в пределах от нашей Солнечной системы и до всей Вселенной. Он описывает архитектуру пространства и времени, темную материю и темную энергию, рассказывает, как сформировались галактики и почему взрываются звезды, как все началось и чем все это может закончиться. Он обсуждает параллельные вселенные, проблему тонкой настройки космоса, которая позволяет жить в нем, какие формы может принимать внеземная жизнь и с какой вероятностью наша земная может быть сметена ударом астероида. «Математика космоса» — это волнующий и захватывающий математический квест на деталях внутреннего мира астрономии и космологии. Издание подготовлено в партнерстве с Фондом некоммерческих инициатив «Траектория».


Рекомендуем почитать
Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.