Истина и красота: Всемирная история симметрии - [121]
Если мы соглашаемся с Дираком в том, что корни вселенной — в математике, то мы можем сказать, что вероятная Теория Всего существует постольку, поскольку существует E>8, а E>8 существует постольку, поскольку существуют октонионы. Что открывает перед нами занятную философскую возможность: структура, лежащая в основе нашей вселенной (про которую мы знаем, что она очень специальная), выделена своей связью с уникальным математическим объектом — октонионами.
Красота есть истина, а истина — красота. Пифагорейцам и платоникам понравилось бы такое свидетельство определяющей роли математических структур в картине нашего мира. Октонионы обладают зачаровывающей, сюрреалистической математической красотой, за которую Дирак ухватился бы в качестве причины, указывающей, почему 10-мерная теория струн должна быть истинной. Если же она, на нашу беду, окажется ложной, то будет, тем не менее, даже более интересной, чем что бы то ни было иное, которое окажется истинным. Правда, нам известен и тот факт, что прекрасные теории не обязательно истинны, и до тех пор, пока по поводу суперструн не будет вынесен вердикт, эта возможность должна оставаться только гипотезой.
Какова бы ни была их важность в физике, круг идей, связанных с октонионами, — чистое золото для математики.
Связь между октонионами и исключительными группами Ли представляет собой одно из целой серии странных соотношений между различными обобщениями кватернионов и передним краем современной физики. Я хочу достаточно глубоко рассмотреть некоторые из этих связей, чтобы вы смогли оценить, насколько они замечательны. И я собираюсь начать с некоторых из самых старых исключительных структур в математике — формул для сумм квадратов.
Одна такая формула естественно вытекает из комплексных чисел. Каждое комплексное число имеет «норму» — квадрат расстояния от числа до начала координат. По теореме Пифагора, норма числа x + iy равна x>2 + y>2. Правила умножения комплексных чисел, сформулированные Весселем, Арганом, Гауссом и Гамильтоном, говорят нам, что норма обладает очень приятным свойством. Если перемножить два комплексных числа, то нормы тоже перемножатся. На языке символов (x>2 + y>2)(u>2 + v>2) = (xv + yu)>2 + (xu − yv)>2. Сумма двух квадратов, умноженная на сумму двух квадратов, всегда является суммой двух квадратов. Этот факт был известен индийскому математику Брахмагупте около 650 года, а также Фибоначчи в 1200 году.
На начальном этапе математиков в теории чисел сильно занимали суммы двух квадратов, потому что с их помощью можно было различать два типа простых чисел. Легко доказать, что если нечетное число представляется в виде суммы двух квадратов, то оно должно иметь вид 4k + 1 для некоторого целого k. Остальные нечетные числа, имеющие вид 4k + 3, нельзя представить в виде суммы двух квадратов. Однако не верно, что каждое число вида 4k + 1 является суммой двух квадратов, даже если разрешить одному из квадратов равняться нулю. Первое такое исключение доставляет число 21.
Ферма сделал замечательное по красоте открытие: эти исключения не могут быть простыми числами. Он доказал, что, наоборот, каждое простое число вида 4k +1 является суммой двух квадратов. Из приведенной выше формулы для перемножения сумм двух квадратов тогда следует, что нечетное число является суммой двух квадратов, если и только если каждый простой множитель вида 4k + 3 входит в четной степени. Например, 45 = 3>2 + 6>2 является суммой двух квадратов. Его разложение на простые множители имеет вид 3×3×5, и простой множитель 3, имеющий вид 4k + 3 (при k = 0), возникает в степени два — т.е. в четной степени. Другой множитель, 5, возникает в нечетной степени, но это простое число имеет вид 4k + 1 (при k = 1), что не вызывает никаких проблем.
С другой стороны, исключение 21 есть 3×7, где оба простых имеют вид 4k + 3, причем каждое входит в степени 1 (т.е. в нечетной степени), и поэтому для 21 правило не работает. Для бесконечного числа других чисел оно не работает по той же причине.
Позднее Лагранж использовал аналогичные методы для доказательства того факта, что каждое положительное целое число является суммой четырех квадратов (здесь разрешаются нули). Его доказательство использует хитрую формулу, открытую Эйлером в 1750 году. Оно похоже на приведенное выше рассуждение, но только относится к суммам четырех квадратов. Сумма четырех квадратов, умноженная на сумму четырех квадратов, есть сумма четырех квадратов. Подобной формулы не может быть для суммы трех квадратов, потому что существуют пары чисел, которые оба являются суммой трех квадратов, но произведение которых такой суммой не является. Однако в 1818 году Деген нашел формулу произведения для суммы восьми квадратов. Ту же формулу открыл Грейвс, используя октонионы. Бедный Грейвс — сделанное им раньше всех открытие октонионов приписано другому; его формула для восьми квадратов оказалась неоригинальной.
Важно не только читать хорошие книги, но и писать таковые… Из-за нарушения этого правила волшебники Незримого университета вынуждены вновь спасать несчастную вселенную Круглого мира.XIX век, Англия. Некий человек по имени Чарльз Дарвин пишет книгу «Теология видов», которая не только становится бестселлером, но и тормозит научный прогресс более чем на век, что неизбежно вызовет новый ледниковый период в ближайшие столетия. Ну и как тут не вмешаться аркканцлеру Чудакулли и его коллегам?Третья книга научно-популярного цикла, созданного Терри Пратчеттом в соавторстве с Йеном Стюартом и Джеком Коэном, рассказывает читателю о теории эволюции и ее влиянии на развитие всего человечества.Впервые на русском языке!
Добро пожаловать в XXIII век!В эпоху, когда человечество наконец-то «освоилось» в Солнечной системе.На юпитерианскую луну Каллисто, где космоархеологи нашли погребенное под многотысячелетними слоями льдов… устройство? Или все-таки СУЩЕСТВО?То, что привезли на Землю. То, что однажды… включилось? Или все-таки – ожило?И тогда гигантская комета, летевшая к Юпитеру, вдруг изменила свою траекторию – и понеслась к Земле…Что это – нелепое стечение обстоятельств? Неизвестный космический фактор? Или – непреложное доказательство существования на Юпитере разумной жизни?И теперь космический флот Земли отправляется к Юпитеру…
Закономерности простых чисел и теорема Ферма, гипотеза Пуанкаре и сферическая симметрия Кеплера, загадка числа π и орбитальный хаос в небесной механике. Многие из нас лишь краем уха слышали о таинственных и непостижимых загадках современной математики. Между тем, как ни парадоксально, фундаментальная цель этой науки — раскрывать внутреннюю простоту самых сложных вопросов. Английский математик и популяризатор науки, профессор Иэн Стюарт, помогает читателю преодолеть психологический барьер. Увлекательно и доступно он рассказывает о самых трудных задачах, над которыми бились и продолжают биться величайшие умы, об истоках таких проблем, о том, почему они так важны и какое место занимают в общем контексте математики и естественных наук.
В двух мирах – Плоском и Круглом – вновь переполох! Омниане узнали о Круглом мире и хотят его контролировать. Само его существование – это издевательство над их религией. Однако волшебники Незримого университета придерживаются совсем другой точки зрения. В конце концов, они создали этот мир!В четвертой книге цикла «Наука Плоского мира» Терри Пратчетт, профессор Йен Стюарт и доктор Джек Коэн создают мозгодробительную смесь литературы, ультрасовременной науки и философии в попытке ответить на ДЕЙСТВИТЕЛЬНО большие вопросы – на этот раз о Боге, Вселенной и, честно говоря, Обо Всем.Впервые на русском языке!
Когда магический эксперимент выходит из-под контроля, волшебники Незримого Университета случайно создают новую Вселенную. Внутри они обнаруживают планету, которую называют Круглым Миром. Круглый Мир — это удивительное место, где логика берет верх над волшебством и здравым смыслом.Как Вы уже, наверное догадались, это наша Вселенная, а Круглый Мир — это Земля. Вместе с волшебниками, наблюдающими за развитием своего случайного творения, мы проследим историю Вселенной, начиная с исходной сингулярности Большого Взрыва и заканчивая эволюцией жизни на Земле и за ее пределами.Переплетая оригинальный рассказ Терри Пратчетта с главами, написанными Джеком Коэном и Йеном Стюартом, книга дает замечательную возможность посмотреть на нашу Вселенную глазами волшебников.
Как математические модели объясняют космос? Иэн Стюарт, лауреат нескольких премий за популяризацию науки, представляет захватывающее руководство по механике космоса в пределах от нашей Солнечной системы и до всей Вселенной. Он описывает архитектуру пространства и времени, темную материю и темную энергию, рассказывает, как сформировались галактики и почему взрываются звезды, как все началось и чем все это может закончиться. Он обсуждает параллельные вселенные, проблему тонкой настройки космоса, которая позволяет жить в нем, какие формы может принимать внеземная жизнь и с какой вероятностью наша земная может быть сметена ударом астероида. «Математика космоса» — это волнующий и захватывающий математический квест на деталях внутреннего мира астрономии и космологии. Издание подготовлено в партнерстве с Фондом некоммерческих инициатив «Траектория».
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.