Истина и красота: Всемирная история симметрии - [110]
У вас может сложиться впечатление, что 36 фундаментальных частиц да еще глюоны в ассортименте[97], — не слишком большое улучшение по сравнению с шестьюдесятью или более частицами. Однако кварки образуют семейство с очень строгой структурой и огромной симметрией. Все они представляют собой вариацию на одну и ту же тему, в отличие от дикого зверинца частиц, с которыми физикам приходилось иметь дело до открытия кварков.
Описание фундаментальных частиц в терминах кварков и глюонов известно как Стандартная Модель[98]. Она исключительно хорошо согласуется с экспериментальными данными. Некоторые из масс некоторых частиц пришлось установить таким образом, чтобы добиться согласия с наблюдениями, но после этого все другие массы в точности попадают куда надо. Здесь нет замкнутого логического круга.
Кварки связаны друг с другом очень крепко, и невозможно увидеть изолированный кварк. Все, что удается наблюдать, это комбинации из двоек и троек кварков. Тем не менее физика частиц нашла непрямые подтверждения существования кварков. Они не являются всего лишь нумерологическими изысканиями в зоопарке частиц. И для тех, кто верит, что вселенная в основе своей прекрасна, свойства симметрии кварков подтверждают это.
Согласно квантовой хромодинамике, протон составлен из трех кварков — двух up и одного down. Если взять кварки из протона, перетасовать их, а потом положить обратно, то все равно получится протон. Таким образом, законы для протонов должны быть симметричны относительно перестановок составляющих их кварков. Более интересно то, что эти законы также оказываются симметричными относительно изменения типа кварка. Можно было бы, скажем, превратить up-кварк в down-кварк, и законы работали бы по-прежнему[99].
Отсюда следует, что настоящая группа симметрии является здесь не просто группой из шести перестановок трех кварков, а тесно связанной с ней непрерывной группой SU(3) — одной из простых групп в списке Киллинга. Преобразования из SU(3) оставляют уравнения для законов природы неизменными, но они могут изменить решения этих уравнений. Используя SU(3), можно, например, «повернуть» протон в нейтрон. Все, что нужно сделать, — это перевернуть все составляющие его кварки вверх ногами, так, чтобы два up и один down стали двумя down и одним up. Мир фермионов имеет SU(3) симметрию, которая действует, меняя один фермион на другой.
Еще две группы симметрии дают вклад в Стандартную Модель. Калибровочные симметрии слабых взаимодействий, образующие группу SU(2), могут заменить электрон на нейтрино. Группа SU(2) — еще одна из списка Киллинга. И доброе старое электромагнитное поле имеет симметрию U(1) — не лоренцеву симметрию уравнений Максвелла, а калибровочную (т.е. локальную) симметрию изменений фазы. Эта группа отсутствует в списке Киллинга потому, что это не SU(1), но морально она там присутствует, поскольку является очень близким родственником[100].
Электрослабая теория соединила электромагнетизм и слабое взаимодействие путем объединения их калибровочных групп. Стандартная Модель также включает в себя сильные взаимодействия, являясь единой теорией для всех фундаментальных частиц. Делает она это весьма прямолинейно: она просто соединяет все три калибровочные группы вместе, в группу SU(3)×SU(2)×U(1). Эта конструкция проста и непосредственна, но не особо изящна, и именно из-за нее Стандартная Модель напоминает сооружение, построенное из жевательной резинки и куска бечевки.
Предположим, у вас есть мяч для гольфа, пуговица и зубочистка. Мяч для гольфа имеет сферическую симметрию SO(3), пуговица имеет симметрию окружности SO(2), а зубочистка обладает, скажем, просто отражательной симметрией O(1). Можно ли найти некоторый объединенный объект, обладающий всеми этими тремя типами симметрий? Да, можно — просто положите все три в бумажный пакет. Теперь вы можете применять SO(3) к содержимому пакета за счет вращения мяча для гольфа, SO(2) за счет вращения пуговицы, a O(1) — за счет переворачивания зубочистки. Группа симметрии содержимого пакета есть SO(3)×SO(2)×O(1). Стандартная Модель соединяет симметрии таким же образом, только вместо вращений она использует «унитарные преобразования» из квантовой механики. И страдает от того же недостатка: она просто сваливает различные системы в кучу и комбинирует их симметрии очевидным и довольно тривиальным способом.
Гораздо более интересный способ комбинирования трех групп симметрий может состоять в построении чего-то, что содержит те же объекты, но более изящным способом, чем просто в бумажном пакете. Может быть, у вас получится уравновесить зубочистку на мяче для гольфа, а на конце ее прикрепить пуговицу. Или у вас может быть целая система зубочисток, подобная спицам колеса; установите пуговицу на втулку и крутите колесо на мяче для гольфа. Если вы хорошенько исхитритесь, быть может, построенный объект будет обладать огромной симметрией, скажем, группой K(9). (Такой группы нет. Я придумал ее для этого обсуждения.) Группы симметрии SO(3), SO(2) и O(1) по отдельности могли бы при везении оказаться подгруппами в K(9). Это был бы куда более впечатляющий способ объединить мяч для гольфа, пуговицу и зубочистку.
Важно не только читать хорошие книги, но и писать таковые… Из-за нарушения этого правила волшебники Незримого университета вынуждены вновь спасать несчастную вселенную Круглого мира.XIX век, Англия. Некий человек по имени Чарльз Дарвин пишет книгу «Теология видов», которая не только становится бестселлером, но и тормозит научный прогресс более чем на век, что неизбежно вызовет новый ледниковый период в ближайшие столетия. Ну и как тут не вмешаться аркканцлеру Чудакулли и его коллегам?Третья книга научно-популярного цикла, созданного Терри Пратчеттом в соавторстве с Йеном Стюартом и Джеком Коэном, рассказывает читателю о теории эволюции и ее влиянии на развитие всего человечества.Впервые на русском языке!
Добро пожаловать в XXIII век!В эпоху, когда человечество наконец-то «освоилось» в Солнечной системе.На юпитерианскую луну Каллисто, где космоархеологи нашли погребенное под многотысячелетними слоями льдов… устройство? Или все-таки СУЩЕСТВО?То, что привезли на Землю. То, что однажды… включилось? Или все-таки – ожило?И тогда гигантская комета, летевшая к Юпитеру, вдруг изменила свою траекторию – и понеслась к Земле…Что это – нелепое стечение обстоятельств? Неизвестный космический фактор? Или – непреложное доказательство существования на Юпитере разумной жизни?И теперь космический флот Земли отправляется к Юпитеру…
Закономерности простых чисел и теорема Ферма, гипотеза Пуанкаре и сферическая симметрия Кеплера, загадка числа π и орбитальный хаос в небесной механике. Многие из нас лишь краем уха слышали о таинственных и непостижимых загадках современной математики. Между тем, как ни парадоксально, фундаментальная цель этой науки — раскрывать внутреннюю простоту самых сложных вопросов. Английский математик и популяризатор науки, профессор Иэн Стюарт, помогает читателю преодолеть психологический барьер. Увлекательно и доступно он рассказывает о самых трудных задачах, над которыми бились и продолжают биться величайшие умы, об истоках таких проблем, о том, почему они так важны и какое место занимают в общем контексте математики и естественных наук.
В двух мирах – Плоском и Круглом – вновь переполох! Омниане узнали о Круглом мире и хотят его контролировать. Само его существование – это издевательство над их религией. Однако волшебники Незримого университета придерживаются совсем другой точки зрения. В конце концов, они создали этот мир!В четвертой книге цикла «Наука Плоского мира» Терри Пратчетт, профессор Йен Стюарт и доктор Джек Коэн создают мозгодробительную смесь литературы, ультрасовременной науки и философии в попытке ответить на ДЕЙСТВИТЕЛЬНО большие вопросы – на этот раз о Боге, Вселенной и, честно говоря, Обо Всем.Впервые на русском языке!
Когда магический эксперимент выходит из-под контроля, волшебники Незримого Университета случайно создают новую Вселенную. Внутри они обнаруживают планету, которую называют Круглым Миром. Круглый Мир — это удивительное место, где логика берет верх над волшебством и здравым смыслом.Как Вы уже, наверное догадались, это наша Вселенная, а Круглый Мир — это Земля. Вместе с волшебниками, наблюдающими за развитием своего случайного творения, мы проследим историю Вселенной, начиная с исходной сингулярности Большого Взрыва и заканчивая эволюцией жизни на Земле и за ее пределами.Переплетая оригинальный рассказ Терри Пратчетта с главами, написанными Джеком Коэном и Йеном Стюартом, книга дает замечательную возможность посмотреть на нашу Вселенную глазами волшебников.
Как математические модели объясняют космос? Иэн Стюарт, лауреат нескольких премий за популяризацию науки, представляет захватывающее руководство по механике космоса в пределах от нашей Солнечной системы и до всей Вселенной. Он описывает архитектуру пространства и времени, темную материю и темную энергию, рассказывает, как сформировались галактики и почему взрываются звезды, как все началось и чем все это может закончиться. Он обсуждает параллельные вселенные, проблему тонкой настройки космоса, которая позволяет жить в нем, какие формы может принимать внеземная жизнь и с какой вероятностью наша земная может быть сметена ударом астероида. «Математика космоса» — это волнующий и захватывающий математический квест на деталях внутреннего мира астрономии и космологии. Издание подготовлено в партнерстве с Фондом некоммерческих инициатив «Траектория».
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.