Искусство статистики. Как находить ответы в данных - [17]
В предыдущих главах предполагалось, что у вас есть какая-то проблема, вы получаете какие-то данные, смотрите на них и находите их сводные характеристики. Иногда ответ уже заключен в подсчете, измерении или описании. Например, если мы хотим знать, сколько людей в прошлом году обращалось в службу экстренной медицинской помощи, то данные дадут нам ответ.
Однако часто вопрос выходит за рамки обычного описания данных: мы стремимся узнать нечто большее, чем просто набор имеющихся у нас наблюдений, например, хотим делать прогнозы (что будет происходить с показателями в следующем году?) или сообщить о причинах (почему цифры растут?)
Прежде чем приступить к обобщению на основе данных, чтобы узнать что-то о мире за пределами непосредственных наблюдений, нужно задать себе вопрос: «Узнать о чем?». А это требует обращения к сложной идее индуктивного умозаключения.
Многие люди имеют некоторое смутное представление о дедукции благодаря Шерлоку Холмсу, использовавшему ее при поиске преступников[69]. В реальной жизни дедукция – это процесс применения правил логики для перехода от общего к частному. Если согласно законодательству в стране установлено правостороннее движение, то мы можем прийти к дедуктивному заключению, что в любой ситуации лучше ехать по правой стороне. Индукция работает наоборот: на основании частных случаев предпринимаются попытки сделать общие заключения. Например, мы не знаем, принято ли в каком-то сообществе целовать подруг в щеку, и пробуем это выяснить, наблюдая, целуют ли женщины друг друга один, два, три раза или не целуют вовсе. Принципиальное отличие индукции от дедукции состоит в том, что дедукция дает истинные заключения, а индукция – в общем случае нет[70].
На рис. 3.1 индуктивное умозаключение представлено в виде диаграммы, показывающей шаги, связанные с переходом от данных к конечной цели нашего исследования. Как мы увидели, данные, собранные в ходе опроса, рассказывают нам о поведении людей в выборке; эту информацию мы используем для изучения поведения людей, которые могли бы стать участниками опроса, а уже из этого делаем некоторые предварительные выводы о сексуальном поведении в масштабе страны.
Рис. 3.1
Процесс индуктивного умозаключения: каждую стрелку можно истолковать как «говорит нам кое-что о…»[71]
Конечно, было бы идеально, если бы мы могли сразу перейти от просмотра первоначальных данных к общим утверждениям о целевой совокупности. В стандартных курсах статистики предполагается, что наблюдения извлекаются совершенно случайно и непосредственно из интересующей нас совокупности.
Однако в реальной жизни так бывает редко, поэтому нам приходится рассматривать всю процедуру перехода от первичных данных к конечной цели. При этом, как мы увидели на примере с исследованием Natsal, проблемы могут возникать на каждом этапе.
Переход от данных (этап 1) к выборке (этап 2) – это проблемы измерения. Является ли то, что мы фиксируем в своих данных, точным отражением того, что нас интересует? Мы хотим, чтобы наши данные были:
• надежными – в том смысле, что у них низкая изменчивость от случая к случаю и их можно считать воспроизводимыми и точными;
• достоверными – в том смысле, что вы измеряете именно то, что хотите, без какой-либо систематической ошибки.
Например, адекватность в опросе о сексе основывается на том, что люди на один и тот же вопрос каждый раз, когда их об этом спрашивают, отвечают практически одинаково, причем вне зависимости от интервьюера, настроения респондента или его памяти. Это в какой-то степени можно проверять, задавая в начале и в конце специальные вопросы. Качество исследования также требует, чтобы участники описывали свою сексуальную активность честно, а не систематически преувеличивая или преуменьшая свой опыт. Это довольно строгие требования.
Исследование станет недостоверным, если сами вопросы демонстрируют предвзятость в пользу конкретного ответа. Например, в 2017 году авиакомпания Ryanair объявила, что 92 % ее пассажиров довольны предоставляемым сервисом во время перелетов. Но, как оказалось на самом деле, опрос об уровне удовлетворенности предусматривал только ответы отлично, очень хорошо, хорошо, удовлетворительно и окей[72].
Мы уже видели, как форма подачи чисел (в положительном или отрицательном ключе) влияет на восприятие; точно так же формулировка вопроса может влиять на ответ. Например, в ходе опроса, проведенного в Великобритании в 2015 году, людей спрашивали, поддерживают ли они предоставление 16– и 17-летним подросткам права голосовать на референдуме о выходе из Евросоюза. Оказалось, что 52 % выступают за и 41 % – против. Таким образом, большинство людей поддержали это предложение, поскольку оно сформулировано с позиции признания и расширения прав молодежи.
Но когда тем же респондентам задали вопрос (логически идентичный предыдущему), поддерживают ли они уменьшение возрастного ценза для голосования на референдуме с 18 до 16 лет, доля сторонников этой идеи снизилась до 37 %, а против высказались 56 %. Таким образом, когда то же самое предложение было сформулировано в терминах более рискованной либерализации, большинство оказалось против. Мнение изменилось из-за простой переформулировки вопроса
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.
Один из лучших популяризаторов науки Фрэнк Вильчек в доступной форме описывает основные составляющие физической реальности — пространство, время, материю, энергию и динамическую сложность. Вы узнаете о теории Большого взрыва и возникновении Вселенной, познакомитесь с одними из крупнейших проектов современности: охотой на частицу Хиггса и поиском гравитационных волн, положивших начало новому виду «многоканальной» астрономии. Книга лауреата Нобелевской премии по физике для всех, кто хочет приблизиться к пониманию устройства Вселенной.
Если вы сомневались, что вам может пригодиться математика, эта книга развеет ваши сомнения. Красота приведенных здесь 10 уравнений в том, что пронизывают все сферы жизни, будь то грамотные ставки, фильтрование значимой информации, точность прогнозов, степень влияния или эффективность рекламы. Если научиться вычленять из происходящего данные и математические модели, то вы начнете видеть взаимосвязи, словно на рентгене. Более того, вы сможете управлять процессами, которые другим кажутся хаотичными. В этом и есть смысл прикладной математики. На русском языке публикуется впервые.
Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам. Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика. На русском языке публикуется впервые.
Если упражнения полезны, почему большинство их избегает? Если мы рождены бегать и ходить, почему мы стараемся как можно меньше двигаться? Действительно ли сидячий образ жизни — это новое курение? Убивает ли бег колени и что полезнее — кардио- или силовые тренировки? Дэниел Либерман, профессор эволюционной биологии из Гарварда и один из самых известных исследователей эволюции физической активности человека, рассказывает, как мы эволюционировали, бегая, гуляя, копая и делая другие — нередко вынужденные — «упражнения», а не занимаясь настоящими тренировками ради здоровья. Это увлекательная книга, после прочтения которой вы не только по-другому посмотрите на упражнения (а также на сон, бег, силовые тренировки, игры, драки, прогулки и даже танцы), но и поймете, что для борьбы с ожирением и диабетом недостаточно просто заниматься спортом.