Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева - [108]

Шрифт
Интервал

Прежде чем они будут готовы спуститься вниз, возникает новый световой импульс, в результате которого уже большее количество электронов неодима взлетает на десятый этаж, а потом сразу падает на второй. После того как этот процесс произойдет многократно, на втором этаже начинается сутолока. Как только на втором этаже окажется больше электронов, чем на первом, в лазере произойдет так называемая инверсия заселенности. В таком случае, если какие-то из бездействующих электронов успевают прыгнуть на первый этаж, они расталкивают своих взведенных столпившихся соседей и выталкивают на балкон, в результате чего каким-то электронам приходится упасть со второго уровня на первый. Оцените всю простоту и красоту этого явления: когда электроны неодима падают на этот раз, все падающие частицы попадают со второго уровня на первый одновременно и поэтому излучают свет одного и того же цвета. Такая когерентность – ключевое свойство лазера. Вся остальная аппаратура в лазерном устройстве нужна для очистки света и сглаживания лазера, лучи которого попеременно отскакивают от двух зеркал. Но к этому моменту неодимово-иттриевый кристалл уже справился со своей функцией – сгенерировал луч когерентного концентрированного света. Сила этих лучей такова, что они могут запустить термоядерную реакцию, а сфокусированы они так, что режут человеческую роговицу, не затрагивая остальные части глаза.

После такого описания читатель может подумать, что лазер скорее представляет собой техническое достижение, чем научное чудо. Тем не менее на этапе разработки в 50-е годы лазеры – и мазеры, которые исторически появились первыми, – были восприняты в научной среде с серьезным предубеждением. Чарльз Таунс вспоминает, что даже после того, как ему удалось сконструировать первую рабочую модель мазера, старшие коллеги устало смотрели на него и говорили: «Извините, Чарльз, но это невозможно». И ведь это были не профаны, не узколобые пораженцы, неспособные воспринять Новое Великое Открытие. И Джон фон Нейман, заложивший основы конструирования современных компьютеров (и современных атомных бомб), и Нильс Бор, который больше чем кто-либо сделал для объяснения принципов квантовой механики, отвергали мазер Таунса как «попросту невозможный».

Причина, по которой Бор и фон Нейман отвергали возможность существования лазера, очень проста: они забывали о дуализме света. Точнее, их дезориентировал знаменитый принцип неопределенности, действующий в квантовой механике. Поскольку этот принцип, сформулированный Вернером Гейзенбергом, так легко понять неправильно – но, с другой стороны, как только он понят, этот принцип становится важнейшим инструментом для создания новых форм вещества, – в следующем разделе я постараюсь прояснить эту небольшую загадку Вселенной.

Ничто так не восхищает эстетическое чувство физиков, как дуализм света, но есть и вернейший способ заставить физика вздрогнуть от отвращения: они терпеть не могут, когда кто-то пытается рассуждать о принципе неопределенности в ситуациях, где этот принцип совершенно неприменим. Чтобы вам ни говорили, он не имеет (почти[153]) ничего общего с историей о наблюдателе, который изменяет вещь самим актом ее наблюдения. Суть этого принципа такова:


∆х ∆р ≥ h/4π


Вот и все.

Теперь, если попытаться перевести это с квантово-механического на человеческий язык (что априори рискованно), то это уравнение читается так: произведение неопределенности положения частицы (Ах) и неопределенности ее скорости и направления движения (ее импульса, Ар) всегда будет больше или равно значению «h, деленному на 4л», где h обозначает постоянную Планка. Постоянная Планка – это чрезвычайно маленькое число, примерно в сто триллионов раз меньше единицы, поэтому принцип неопределенности применяется лишь к сверхмалым предметам – например, к электронам или фотонам. Иными словами, если вы совершенно точно знаете положение частицы, то не можете с определенностью установить ее импульс, и наоборот.

Обратите внимание: данная неопределенность не имеет ничего общего с неточными измерениями, которые могут получиться, если пользоваться плохой линейкой. Это неопределенность, неотъемлемая от нашего мироздания. Давайте вновь вспомним о переменчивой природе света, который ведет себя то как частица, то как волна. Отвергая возможность существования лазера, Бор и фон Нейман не вполне понимали, в каких ситуациях проявляется волновая, а в каких – корпускулярная природа света. В их времена лазер казался столь точным и сфокусированным источником энергии, что неопределенность положения фотонов в нем должна была практически отсутствовать. Это означало, что неопределенность импульса должна была быть настолько огромной, что фотоны разлетались бы с любой энергией в любом направлении, а это, казалось бы, противоречило идее плотного сфокусированного луча.

Они забывали, что свет может вести себя и как волна, а движение волн определяется другими законами. Во-первых, как можно узнать, где находится волна? Природа волны такова, что она одновременно распространяется во всех направлениях – а это сама неопределенность. Кроме того, в отличие от частиц, одни волны могут поглощать другие и объединяться друг с другом. Если бросить два камня в пруд, то самые большие волны возникнут там, где сойдутся круги от них. Ведь именно эта маленькая область будет получать энергию от волн, идущих с двух сторон одновременно.


Еще от автора Сэм Кин
Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде

Книга «Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде» посвящена одному из самых важных и интересных разделов биологии – генетике. Вы познакомитесь с историей генетики и узнаете о расшифровке структуры ДНК и проекте «Геном человека». Для всех увлеченных и неравнодушных.


Интервью с Кастанедой, 1976

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Дуэль нейрохирургов. Как открывали тайны мозга и почему смерть одного короля смогла перевернуть науку

Сэм Кин, известный американский писатель, признанный мэтр жанра научно-популярной литературы, предлагает увлекательное путешествие во времени. Вы узнаете, как на протяжении столетий менялось представление о мозге и как курьезные, порой страшноватые, а иногда и просто фантастические случаи помогали совершить прорыв в науке и медицине. Каждая глава книги представляет собой невероятную, увлекательную и правдивую историю о том, на что способен мозг человека, если что-то (или кто-то) воздействует на него со стороны, будь то болезнь, скальпель хирурга или… железный лом.


Рекомендуем почитать
Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Меч и Грааль

Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.


Родники здоровья

В книге кандидата биологических наук Г. Свиридонова рассказывается о рациональном и эффективном использовании природных богатств на благо человека, об их охране и воспроизводстве. Издание рассчитано на массового читателя.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.


Удивительная астрономия

Книга посвящена чрезвычайно увлекательному предмету, который, к сожалению, с недавних пор исключен из школьной программы, – астрономии. Читатель получит представление о природе Вселенной, о звездных и планетных системах, о ледяных карликах и огненных гигантах, о туманностях, звездной пыли и других удивительных объектах, узнает множество интереснейших фактов и, возможно, научится мыслить космическими масштабами. Книга адресована всем, кто любит ясной ночью разглядывать звездное небо.