Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева - [107]

Шрифт
Интервал

Здесь я описал так называемую BCS-теорию сверхпроводимости. Она названа по первым буквам фамилий предложивших ее ученых: Джона Бардина, Леона Купера (электронные пары называются «парами Купера») и Роберта Шриффера[152]. Это был тот самый Джон Бардин, который участвовал в изобретении германиевого транзистора, получил за это Нобелевскую премию и опрокинул сковородку с яичницей, услышав эту новость. После того как в 1951 году Бардин покинул Bell Labs и отправился в Иллинойс, он всецело сосредоточился на изучении сверхпроводимости. Через шесть лет группа BCS полностью сформулировала новую теорию. Она оказалась настолько качественной и точной, что в 1972 году трое ученых совместно получили за свою работу Нобелевскую премию по физике. На этот раз Бардин снова отличился – он пропустил пресс-конференцию в университете, так как не смог выехать из гаража, где незадолго до того поставил новую электрическую дверь на транзисторном управлении. Но, приехав в Стокгольм повторно, Бардин все-таки познакомил своих уже взрослых сыновей со шведским королем – как и обещал в пятидесятые годы.

Если охладить элементы еще ниже тех температур, при которых возникает сверхпроводимость, то атомы настолько «сходят с ума», что начинают наседать один на другой и даже заглатывать друг друга. Важнейшим фактором, позволяющим понять такое невероятное эйнштейновское состояние материи, является так называемая когерентность. Чтобы разобраться, что же это такое, нам потребуется сделать короткое, но очень интересное отступление и поговорить о природе света, а также о другой инновации на грани возможного – о лазерах.

Физики обладают довольно странным эстетическим чувством, и мало найдется на свете вещей, которые услаждают их

больше, чем двойственность, дуализм света. Обычно мы воспринимаем свет как разновидность волн. На самом деле, Эйнштейн смог сформулировать Специальную теорию относительности отчасти потому, что размышлял, какой он сможет увидеть Вселенную, если прокатится верхом на световой волне. Его интересовало, как будет выглядеть пространство, как будет (или не будет) идти время. Даже не спрашивайте меня, как он смог себе это вообразить. В то же время Эйнштейн доказал (чем он только не занимался в этой области), что иногда свет ведет себя как поток частиц, которые называются фотонами. Объединив два представления о свете – как о волне и как о частице – в теорию, получившую название корпускулярно-волнового дуализма, он верно заключил, что свет – это не только самая быстрая субстанция в наблюдаемой Вселенной, но и вообще самая быстрая субстанция, которая перемещается в вакууме со скоростью около трехсот тысяч километров в секунду. Конкретное состояние, в котором будет зарегистрирован свет – как волна или как частица, – зависит от того, как его измерять, поскольку свет всегда находится в двух этих состояниях одновременно.

Несмотря на то, какой чистой красотой свет обладает в вакууме, он может искажаться в результате взаимодействия с некоторыми элементами. Натрий и празеодим способны снижать скорость света примерно до 17 метров в секунду – это в 20 раз меньше, чем скорость звука. Эти элементы даже могут захватывать свет, удерживать его несколько секунд, как мячик, а потом отбрасывать в другом направлении.

Лазеры производят со светом еще более тонкие манипуляции. Как вы помните, электроны движутся, как лифт: они не могут подняться с уровня 1 на уровень 3,5 или упасть с уровня 5 на уровень 1,8. Электронные переходы происходят только между целочисленными уровнями. Когда возбужденные электроны возвращаются на исходный уровень, они избавляются от избыточной энергии, испуская ее в виде света. Поскольку движение электрона настолько ограничено, невелик и диапазон цветов, которые могут при этом возникать. Такой свет должен быть монохромным – как минимум в теории. На практике же электроны в различных атомах могут одновременно падать с уровня 3 на 1, с 4 на 2 и т. д. И в каждом случае получается иной свет. Кроме того, разные атомы излучают свет в разное время. Нашему глазу этот процесс кажется синхронным, но на фотонном уровне он нескоординированный и беспорядочный.

Лазеры позволяют обойти проблему несогласованности во времени, ограничивая количество «этажей», на которых может останавливаться «лифт». Аналогичные устройства, мазеры, действуют точно так же, но они генерируют невидимый свет. Самые мощные современные лазеры порождают сверхмощные лучи, которые в долю секунды выдают больше энергии, чем все электростанции Соединенных Штатов. В таких лазерах используются кристаллы иттрия, начиненные неодимом. Внутри лазерного устройства стробирующий световой импульс завивается вокруг неодимово-иттриевого кристалла и проблескивает исключительно быстро с невероятно высокой интенсивностью. Такое впрыскивание света возбуждает электроны в неодиме и заставляет их прыгать гораздо выше, чем это бывает в естественных условиях. Ну, как будто они подпрыгивают с первого прямо на десятый этаж. Испытывая «головокружение», они сразу же падают обратно на безопасный уровень – скажем, на второй этаж. Но в отличие от естественных переходов электроны настолько возбуждены, что изменяют свое поведение и испускают избыточную энергию уже не в виде света, а в виде тепла. Очутившись на надежном втором этаже, они «с облегчением» покидают лифт и остаются на втором этаже, не торопясь вернуться на первый.


Еще от автора Сэм Кин
Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде

Книга «Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде» посвящена одному из самых важных и интересных разделов биологии – генетике. Вы познакомитесь с историей генетики и узнаете о расшифровке структуры ДНК и проекте «Геном человека». Для всех увлеченных и неравнодушных.


Интервью с Кастанедой, 1976

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Дуэль нейрохирургов. Как открывали тайны мозга и почему смерть одного короля смогла перевернуть науку

Сэм Кин, известный американский писатель, признанный мэтр жанра научно-популярной литературы, предлагает увлекательное путешествие во времени. Вы узнаете, как на протяжении столетий менялось представление о мозге и как курьезные, порой страшноватые, а иногда и просто фантастические случаи помогали совершить прорыв в науке и медицине. Каждая глава книги представляет собой невероятную, увлекательную и правдивую историю о том, на что способен мозг человека, если что-то (или кто-то) воздействует на него со стороны, будь то болезнь, скальпель хирурга или… железный лом.


Рекомендуем почитать
Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Меч и Грааль

Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.


Родники здоровья

В книге кандидата биологических наук Г. Свиридонова рассказывается о рациональном и эффективном использовании природных богатств на благо человека, об их охране и воспроизводстве. Издание рассчитано на массового читателя.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.


Удивительная астрономия

Книга посвящена чрезвычайно увлекательному предмету, который, к сожалению, с недавних пор исключен из школьной программы, – астрономии. Читатель получит представление о природе Вселенной, о звездных и планетных системах, о ледяных карликах и огненных гигантах, о туманностях, звездной пыли и других удивительных объектах, узнает множество интереснейших фактов и, возможно, научится мыслить космическими масштабами. Книга адресована всем, кто любит ясной ночью разглядывать звездное небо.