Информация или интуиция? - [16]
СКОЛЬКО СПОСОБОВ!
Вопрос «Играет ли господь бог в кости?» имеет значение далеко не только для квантовой физики.В предыдущей главе мы пришли к выводу, что информация суть физическая величина и один из возможных способов измерения состоит в том, чтобы измерять .ее количественно через величину энтропии, взятую с обратным знаком. Это лишь один из возможных способов, и мы пока что уклонились от обсуждения вопроса о том, является ли такой способ наилучшим или даже вообще приемлемым. Тем не менее уже на данном уровне рассмотрения стало ясно, что энтропия и информация играют очень важную роль при описании процессов, происходящих в природе.Были высказаны гипотезы, что степень информированности физической системы определяет качество энергии, накопленной в этой системе, и, более того, что информация и есть та самая причина движения, которую философы и физики ищут с незапамятных времен. Действительно, чем дальше находится физическая система от своего состояния равновесия, тем меньше ее энтропия и, соответственно, ‘тем больше негэнтропия, то есть количество содержащейся в системе информации. С другой стороны, чем дальше находится физическая система от своего состояния равновесия, тем большее количество механической работы (движения) может быть совершено в процессе возврата системы в состояние равновесия. Все это не может не заставить нас более внимательно посмотреть, что же представляет собой энтропия.В начале книги мы определили энтропию как логарифм статистического веса. Статистический вес — это количество способов, которым может быть реализовано данное состояние системы. Логарифм берется, исходя из требования аддитивности (складываемости). Применительно к энтропии это означает, что энтропия системы, состоящей, скажем, из двух подсистем, должна быть равна сумме энтропии каждой из этих подсистем.Было показано, что среднее количество времени, в течение которого система пребывает в данном состоянии, пропорционально количеству способов, которым может быть реализовано это состояние, то есть его статистическому весу. Это справедливо в том случае, когда псе способы равнозначны и ни один из них не оказывается предпочтительным. Поэтому, если статистический вес некоторого состояния или некоторой группы состояний существенно больше статистического веса других состояний, то система большую часть времени в среднем проводит именно в этом состоянии или в этой группе состояний.Наиболее существенно здесь то, что подобное утверждение не исключает возможности для системы находиться в состоянии с малым статистическим весом. Более того, основной принцип отсутствия предпочтительных состояний требует, чтобы каким малым ни был бы статистический вес некоторого состояния, система обязательно, хоть, и весьма малое время, но все-таки пре бывала в этом состоянии. Однако, оказавшись в состоянии с малым статистическим весом, система в ближайшее время переходит в состояние с большим статистическим весом. Это обстоятельство составляет содержание второго начала термодинамики и формулируется каш закон неубывания энтропии. Мы уже отмечали, что закон неубывания энтропии отражает всего-навсего определенное свойство величины, которую мы назвали статистическим весом. В то же время закон неубывания энтропии является одним из наиболее универсальных законов физики. Возникает вопрос: чем же так замечателен статистический вес, что законы, описывающие его поведение, приобретают значение фундаментальных физических законов?
СВОЙСТВА БЕЗРАЗЛИЧИЯ
Бросим еще один взгляд на бильярдный стол. В предыдущей главе мы показали, что наибольшим статистическим весом обладают состояния, При которых в пределах правой половины стола находятся семь, восемь или девять, то есть примерно половина шаров. Это представляется совершенно естественным. Ясно, что если на поверхности бильярда нет никаких предпочтительных областей, то шары должны распределиться по поверхности равномерно и, в частности, на половине поверхности в среднем должна находиться примерно половина шаров. Однако все это совсем не так очевидно, как кажется на первый взгляд. Вспомним, что у настоящего бильярда шары нумерованы, и если бы мы потребовали, чтобы в правой половине бильярда находились, скажем, шары с номерами от 1 до 8, а, соответственно, на левой половине — шары с номерами от 9 до 16, то такое состояние реализовалось бы одним-единственным способом, его статистический вес был бы равен единице, а энтропия — нулю.Кажется, мы наконец-то начинаем понимать, в чем дело. Обнаруженные в предыдущей главе свойства бильярдного стола определяются тем, что нам совершенно безразлично, какой именно шар находится справа, а какой – слева. В расчет принимается лишь общее количество шаров. Как раз это безразличие и является причиной того, что статистический вес одних состояний оказывается на несколько порядков больше статистического веса других.Но подобное безразличие возникло опять-таки не по нашей прихоти. Уже применительно к бильярдному столу становится ясно, что, например, такое обстоятельство, как равновесие, требует, чтобы справа и слева находилось, но одинаковому количеству шаров, и никак не зависит от того, какой шар находится справа, а какой — слева. Бильярдный стол нам понадобился как модель реальных физических систем, состоящих из большого числа одинаковых молекул, в частности, объемов с газом.Макроскопические (то есть такие, которые мы можем непосредственно воспринять с помощью наших органов чувств или простейших приборов) величины, описывающие поведение газа, суть давление, объем и температура. Все так называемые газовые законы представляют собой соотношения между этими тремя величинами. Давление определяется тем, как часто и с какой силой ударяются молекулы о стенки сосуда. При этом совершенно безразлично, какая именно молекула ударяется в каком именно месте. Важно лишь среднее количество молекул, находящихся в непосредственной близости от данной области поверхности стенки, и их средняя скорость. Температура газа определяется средней скоростью движения молекул, и опять-таки для того, чтобы температура имела данное значение, совершенно несущественно, какое значение скорости имеет каждая молекула. Важна лишь средняя скорость. Наконец, объем вообще не зависит ни от количества, ни от скоростей молекул. Конечно, если он больше суммарного объема, занимаемого всеми молекулами.Все сказанное является справедливым далеко не только для бильярдных столов и объемов с газом. Всякий раз, когда мы сталкиваемся с явлениями, представляющими собой результат одновременного действия очень большого числа элементов, независимо оттого, что представляют собой элементы, в силу того что поведение каждого элемента никак не определяет явление в целом, мы описываем это явление средними значениями по всему множеству элементов. Состояния, которые определяются лишь средним значением, взятым при условии, что индивидуальность элементов совершенно не принимается во внимание, называются вырожденными. Количество способов, которым может быть реализовано такое состояние, определяет степень вырождения.Теперь мы, кажется, получили возможность сказать кое-что о сути рассматриваемых явлений. Суть состоит именно в том, что до сих пор, начиная от бильярдного стола и кончая различными физическими телами: твердыми, жидкими и газообразными, — мы имели дело с явлениями, зависящими от совместного действия чрезвычайно большого количества элементов. Большинство состояний, которые мы реально наблюдаем в окружающем нас мире, оказываются вырожденными. Соответственно, большинство законов природы представляют собой соотношения между средними величинами. Именно вырожденность состояний и определяет свойства статистического веса.Итак, свойство природы, описываемое законом неубывания энтропии, есть на самом деле свойство, состоящее в том, что большинство явлений природы сводится к вырожденным состояниям.Но так бывает далеко не всегда. Уже в следующей главе мы столкнемся с явлениями, в которых вырождение, как говорят, снимается и индивидуальность элементов начинает играть существенную роль. А пока что все сказанное следует рассматривать как своеобразное введение к тому основному, что мы собираемся поведать в этой главе.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Занимательный рассказ о широких шагах науки — информатики, сложившихся представлениях об информационных процессах в искусственных и живых системах, о системах, способных поставить диагноз и предложить лечение, подсказать ученому путь решения его задачи и т. д., о мощной современной информационной индустрии, а также о людях, посвятивших свою жизнь всем этим проблемам. Издание рассчитано на самые широкие круги читателей.
Эта книга известного нижегородского краеведа не была издана при жизни автора и после его смерти пролежала в семейном архиве 26 лет. Написанная на основе архивных материалов и личных воспоминаний автора, книга показывает жизнь и быт нижегородцев с 1900 по 1916 гг. В данное издание вошли избранные главы книги. Книга предназначена всем, кто интересуется историей Нижегородского края.
Ряд старинных книг, на первый взгляд ничем не отличающихся от других антикварных изданий, стал отправной точкой для странного и шокирующего исследования библиотекаря и журналистки Меган Розенблум. Главная их тайна заключалась отнюдь не в содержании, а в обложках: они были сделаны из человеческой кожи. Откуда произошли эти книги, и кто стоял за их созданием? Для чьих коллекций делались антроподермические издания, и много ли таких было сделано? В «Темных архивах» Меган Розенблум рассказывает, как она совместно с командой ученых, экспертов и других библиотекарей изучала эту мрачную тему, как, идя по следам различных слухов, они пытались выяснить правду.
Все знают теорию естественного отбора (выживает сильнейший), описанную Чарльзом Дарвином. Не все знают другую его теорию – полового отбора, который уходит в область эстетики: эволюция идет по пути красоты, и это наиболее заметно у птиц: самки выбирают самого красивого или музыкального, а не самого сильного и живучего самца. Выбор наиболее привлекательного признака партнера формируется поколение за поколением, и в итоге этот признак становится определяющим для вида. И тот же эстетический принцип вносит свою лепту в эволюцию всех живых существ, включая человека. Эта книга для тех, кому интересна природа красоты и привлекательности, биология и орнитология в частности. На русском языке публикуется впервые.
Эта книга научных историй особенная, она — не об ответах, а о вопросах. Она рассказывает не столько про достижения науки, сколько про нерешённые научные проблемы, про несозданные теории и неизвестные законы природы — другими словами, про ещё не открытые острова в науке. Если юный читатель хочет заняться изучением чудес космоса, исследованием динозавров или расшифровкой таинственных рукописей, то ему непременно надо прочитать эту книгу, которая может стать картой на пути к terra incognita и к разгадкам увлекательных тайн, которые нас окружают.
Какая болезнь самая смертоносная? Чума? Холера? Тиф? Рак? СПИД? ГРИПП! Ученые утверждают: именно гриппу принадлежит «абсолютный рекорд» по убийственной силе. Более того – ни одна война в истории человечества, включая Вторую мировую, не способна сравниться с этим вирусом по числу жертв. Когда в 1918 году эпидемия «испанки» унесла жизни почти 100 миллионов человек, многие сочли это началом Апокалипсиса. Что же современные ученые могут противопоставить вирусу-убийце? И главное – есть ли у нас шанс уцелеть при следующей пандемии? Перевод: Игорь Моничев.