Химия человека. Как железо помогает нам дышать, калий – видеть, и другие секреты периодической таблицы - [50]
Тем не менее тут проще сказать, чем сделать. Чтобы атомные ядра слились, их необходимо прижать друг к другу с огромной силой. В недрах Солнца температура достигает 15 миллионов градусов, а давление в 340 миллиардов раз превышает атмосферное давление на поверхность Земли[287]. Подобные условия за гранью того, что можно воссоздать в реакторе здесь, на Земле.
Задача окажется более посильной, если обычный водород, у которого в ядре лишь один протон, заменить его более тяжелой версией, у которой есть еще один или два нейтрона. Называются эти версии дейтерий и тритий[288]. Атомы дейтерия весят в два раза больше, чем обычный водород, а когда дейтерий занимает место водорода в молекуле воды, получается то, что мы зовем тяжелой водой: компания Norsk Hydro производила ее в Рьюкане, и во время Второй мировой войны из-за нее на предприятии совершались диверсии[289], ведь тяжелая вода понадобится тому, кто производит ядерное оружие из плутония[290]. Тритий – версия водорода с двумя нейтронами – очень нестабильное вещество, распадающееся на другие элементы за несколько лет после образования. Чтобы использовать тритий в термоядерном реакторе, нам сначала придется его изготовить. Сегодня тритий производят из редкого изотопа лития – от всего объема имеющегося на Земле лития его количество составляет менее 10 %.
Возможно, водород, в отличие от лития, бесконечный ресурс. Согласно расчетам, если весь литий, который удастся извлечь из земной коры, мы отправим в термоядерный реактор, при сегодняшнем энергопотреблении его хватит на тысячу лет. Кроме того, дейтерий и тритий есть в морской воде. При наличии эффективного метода добычи этих элементов из океана на удовлетворение людских энергетических потребностей нам хватило бы их на несколько миллионов лет.
В термоядерных реакторах электроны отрываются от атомов, чтобы атомные ядра оказались друг к другу как можно ближе и слились. Газ, чья температура поднимается так высоко, что электроны отрываются от атомов, называется плазмой. На Земле, например, плазму можно обнаружить в молниях и северном сиянии. В случае с плазмой проблема в том, что у нее есть тенденция рассеиваться, следовательно, остывает она быстро. Звезды настолько крупные и тяжелые, что их гравитационное поле удерживает плазму на месте, однако на нашей планете размером с камушек повторить это не выйдет. Альтернатива для нас – с помощью магнитов собирать плазму в магнитное поле определенной формы. Если сконструировать реактор так, чтобы плазма никогда не касалась его стен, содержащееся в ней тепло не уйдет в окружающую среду, а стены реактора не расплавятся и не сгорят.
Охота на термоядерную энергию началась во время холодной войны с обеих сторон железного занавеса. В 1968 году советские ученые сообщили, что им удалось изготовить плазму под воздействием высокой температуры в магнитном поле в виде пончика – она называется «токамак». Вскоре такого же результата добились британские физики. Сегодня ученые со всего мира совместно работают над строительством самого крупного в мире экспериментального термоядерного реактора во Франции (ITER). Согласно плану, первую плазму токамак проекта ITER произведет в 2025 году[291].
Проблема токамака в том, что управлять им нужно очень точно, а магнитное поле удерживается благодаря тому, что электрический ток все растет, и растет, и растет. Разумеется, долго этот процесс продолжаться не может, а инженеры ITER рассчитывают, что им удастся удерживать плазму примерно полчаса, до того как механизм придется отключить и охладить. Подобного рода постоянные колебания температуры предъявляют очень высокие требования к материалам, которые применяются для строительства реактора.
Еще один замысел носит футуристичное название «стелларатор»: магнитное поле имеет безумно сложную форму, благодаря которой механизм можно охлаждать, не делая перерывов. Впервые идею подобного реактора предложили в 1950-е годы, но мощность компьютеров позволила ученым подступиться к задаче по разработке сложной геометрии только в 1980-е годы. В 2016 году в Германии стелларатор Wendelstein 7-X справился с задачей и удерживал плазму водорода при температуре более 10 миллионов градусов примерно одну секунду[292], а теперь ученые работают над его усовершенствованием.
Слияние атомов будет происходить лишь до тех пор, пока в реакторе поддерживается высокая температура. Если что-то пойдет не так и реактор потеряет контроль над магнитным полем, все остановится. Поэтому он не представляет таких опасностей, как неконтролируемая реакция, взрывы и расплавления, известных нам по катастрофам на ядерных электростанциях в Чернобыле и на Фукусиме. Также проблем с отходами у термоядерного реактора гораздо меньше, чем у сегодняшних ядерных электростанций, но, когда атомные ядра сливаются, выделяются нейтроны – они попадают на материалы, из которых сделан реактор, и выделяется небольшое количество радиоактивных отходов. В течение нескольких сотен лет с ними необходимо обращаться как с особыми отходами.
Несмотря на то что развитие идет медленно, в реальности нет никаких причин, чтобы нам не удалось построить термоядерный реактор. Может быть, через 100, 200 или 500 лет важнейшим энергоресурсом станет морская вода. Все, что нам нужно, – достаточное количество денег и ресурсов, чтобы поддерживать крупные научные программы до тех пор, пока нам не улыбнется удача. Но решит ли почти бесконечный источник чистой энергии все наши проблемы?
Перед вами первое подробное исследование норм жизни населения России после Второй мировой войны. Рассматриваются условия жизни в городе в период сталинского режима. Основное внимание уделяется таким ключевым вопросам, как санитария, доступ к безопасному водоснабжению, личная гигиена и эпидемический контроль, рацион, питание и детская смертность. Автор сравнивает условия жизни в пяти ключевых промышленных районах и показывает, что СССР отставал от существующих на тот момент норм в западно-европейских странах на 30-50 лет.
В книге воспоминаний заслуженного деятеля науки РФ, почетного профессора СПбГУ Л. И. Селезнева рассказывается о его довоенном и блокадном детстве, первой любви, дипломатической работе и службе в университете. За кратким повествованием, в котором отражены наиболее яркие страницы личной жизни, ощутимо дыхание целой страны, ее забот при Сталине, Хрущеве, Брежневе… Книга адресована широкому кругу читателей.
Содержание антологии составляют переводы автобиографических текстов, снабженные комментариями об их авторах. Некоторые из этих авторов хорошо известны читателям (Аврелий Августин, Мишель Монтень, Жан-Жак Руссо), но с большинством из них читатели встретятся впервые. Книга включает также введение, анализирующее «автобиографический поворот» в истории детства, вводные статьи к каждой из частей, рассматривающие особенности рассказов о детстве в разные эпохи, и краткое заключение, в котором отмечается появление принципиально новых представлений о детстве в начале XIX века.
Монография впервые в отечественной и зарубежной историографии представляет в системном и обобщенном виде историю изучения восточных языков в русской императорской армии. В работе на основе широкого круга архивных документов, многие из которых впервые вводятся в научный оборот, рассматриваются вопросы эволюции системы военно-востоковедного образования в России, реконструируется история военно-учебных заведений лингвистического профиля, их учебная и научная деятельность. Значительное место в работе отводится деятельности выпускников военно-востоковедных учебных заведений, их вкладу в развитие в России общего и военного востоковедения.
Как цикады выживают при температуре до +46 °С? Знают ли колибри, пускаясь в путь через воды Мексиканского залива, что им предстоит провести в полете без посадки около 17 часов? Почему ветви некоторых деревьев перестают удлиняться к середине июня, хотя впереди еще почти три месяца лета, но лозы и побеги на пнях продолжают интенсивно расти? Известный американский натуралист Бернд Хайнрих описывает сложные механизмы взаимодействия животных и растений с окружающей средой и различные стратегии их поведения в летний период.
Немногие культуры древности вызывают столько же интереса, как культура викингов. Всего за три столетия, примерно с 750 по 1050 год, народы Скандинавии преобразили северный мир, и последствия этого ощущаются до сих пор. Викинги изменили политическую и культурную карту Европы, придали новую форму торговле, экономике, поселениям и конфликтам, распространив их от Восточного побережья Америки до азиатских степей. Кроме агрессии, набегов и грабежей скандинавы приносили землям, которые открывали, и народам, с которыми сталкивались, новые идеи, технологии, убеждения и обычаи.