Грибы, растения и люди - [7]
Первые исследователи микроскопического мира пользовались простыми лупами различной силы увеличения, которые изготавливались из стекла, кварца и даже алмаза. Оптическая часть первых микроскопов XVII-XVIII веков была, конечно, весьма несовершенной. Штативы делали из картона, кости, рога и тому подобных материалов. Самим микроскопам давали причудливые названия, например "окулюс артифишиас" — "искусственный глаз" и тому подобное.
Однако уже в конце XVII века микроскопы появились на прилавках магазинов: несколько фирм наладили их серийное производство. Покупатели были самые разные — ученые и люди, весьма далекие от науки. Для многих микроскоп служил диковинной забавой, некоторых заставлял глубоко задуматься.
В наше время микроскоп стал одним из важнейших приборов, с помощью которых ученые открывают все новые и новые тайны природы. Как был бы поражен Антони ван Левенгук, заглянув в современную лабораторию! Особенно, наверное, его поразили бы микроскопы — ведь в отличие от его луп современный световой микроскоп увеличивает в 3000 раз, а электронный микроскоп — в сотни тысяч и миллионы раз, что позволяет досконально изучить живую клетку.
Ученые, инженеры, оптики, физики, биологи разных стран, используя микроскоп в своих исследованиях, постоянно, хотя и не так быстро, как хотелось бы, улучшали его конструкцию, все более расширяя тем самым границы знаний.
В 1903 году австрийские ученые Г. Зидентопф и Р. Зигмонди нашли новый способ наблюдения объектов — так называемый метод темного поля. Идея этого метода состояла в том, что исследуемый прозрачный объект освещался косыми лучами, которые при отсутствии рассеяния в образце не попадают в объектив микроскопа. Если объект исследования содержит включения также прозрачные, но с другим показателем преломления, то прошедшие через эти включения и изменившие свое направление световые лучи попадают в объектив, и включение становится видимым. Так как большая часть световых лучей в объектив не попадает, поле зрения темное, а на его фоне видны светлые изображения микровключений.
В 1935 году голландский физик Ф. Цернике изобрел фазово-контрастный микроскоп (в 1955 году он получил за это открытие Нобелевскую премию). Преимущество этого прибора заключалось в том, что с его помощью можно было наблюдать живые клетки микроорганизмов, что далеко не всегда возможно при работе с обычным микроскопом. Чтобы хорошо рассмотреть препарат в световой микроскоп, микроорганизмы обычно фиксируют (убивают) и окрашивают; при этом существует опасность изменения структуры клетки, появления "артефактов" (искусственно вызванных процессов или образований). Поэтому очень важно наблюдать организмы в живом состоянии. Фазово-контрастный микроскоп обладает специальным приспособлением, которое изменяет длину пути световых волн, исходящих от наблюдаемого объекта, благодаря чему возникает фазовый сдвиг на одну четвертую длины волны. Это усиливает рельеф изучаемого объекта и помогает увидеть некоторые мелкие элементы структуры клеток.
Близкий родственник фазово-контрастного микроскопа — интерференционный микроскоп, изобретенный французским физиком Г. Номарским, позволяет детально изучить поверхность клеток.
В настоящее время широко используются люминесцентные микроскопы. Само явление люминесценции, в частности, его природные проявления известны с незапамятных времен: свечение некоторых минералов, полярные сияния и так далее. Начатые в конце XIX века систематические исследования люминесценции привели ученых к открытию рентгеновских лучей и радиоактивности. Люминесцентная микроскопия основана на свойстве различных объектов живой и неживой природы испускать видимый свет в одном диапазоне длин волн при их освещении световыми лучами другого диапазона длин волн. Поскольку длина волны лучей люминесценции всегда больше, чем длина волны лучей, ее возбуждающих, освещение объекта стараются проводить ультрафиолетовым светом, в этом случае используют специальный микроскоп с ультрафиолетовой техникой. В биологии люминесцентная микроскопия — незаменимое орудие в руках ученых. В значительной степени это связано с тем, что световые лучи позволяют наблюдать за живыми объектами, и с тем, что многие ткани и органы живых объектов либо обладают собственной флуоресценцией, либо весьма успешно поддаются люминесцентному окрашиванию специальными красителями — флуорохромами.
Трудно представить себе работу цитолога, цитохимика, генетика, микробиолога без электронного микроскопа, так широко используемого в современных лабораториях. Первый электронный микроскоп сконструировали сотрудники Высшей технической школы в Берлине М. Кнолль и Э. Руска в 1931 году. В 1940 году электронный микроскоп был создан в СССР А. А. Лебедевым и В. Н. Верцнером в Государственном оптическом институте в Ленинграде. Вскоре после окончания Великой Отечественной войны советская промышленность приступила к серийному выпуску этих приборов.
Роль световых лучей в электронном микроскопе играют пучки электронов. Их движением управляют электромагниты, заменяющие оптические линзы. Современный электронный микроскоп позволяет получить увеличение объекта в несколько сот тысяч раз.
«Звёздные Войны» — это уникальная смесь научной фантастики и сказки. Мы удивляемся разнообразию существ и технологий, возможностям джедаев и тайне Силы. Но что из описанного в «Звёздных Войнах» основано на реальной науке? Можем ли мы увидеть, как некоторые из необыкновенных изобретений материализуются в нашем мире? «Наука «Звёздных Войн» рассматривает с научной точки зрения различные вопросы из вселенной «Звёздных Войн», относящиеся к военным действиям, космическим путешествиям и кораблям, инопланетным расам и многому другому.
Еще в древности люди познавали мир, наблюдая за животными и анализируя их поведение. Теперь же, в XXI веке, мы можем делать это совсем на другом уровне. Интернет животных – важнейшее достижение человечества – решает сразу несколько проблем. Во-первых, при помощи него мы становимся ближе к животному миру и лучше понимаем братьев наших меньших. Во-вторых, благодаря этой сенсорной сети мы получаем доступ к новым знаниям и открытиям. В книге представлен подробный анализ «фундаментальных перемен, которые сыграют не меньшую роль для человеческого самосознания, чем открытие жизни на других планетах».
Настоящая книга посвящена жизни и деятельности выдающегося русского агронома И. А. Стебута (1833— 1923). Свыше полувека он занимал наиболее видное место среди деятелей русской агрономии. С именем Стебута связаны последние годы жизни первого сельскохозяйственного высшего учебного заведения в нашей стране — Горыгорецкого земледельческого института (ныне Белорусская сельскохозяйственная академия) и первые тридцать лет жизни Петровской академии (ныне Московская сельскохозяйственная Академия имени К. А. Тимирязева), в которой он возглавлял кафедру земледелия.