Грибы, растения и люди - [8]

Шрифт
Интервал

Однако при таком увеличении клетки растений, грибов, бактерий оказываются слишком плотными, и лучи электронов не могут пройти через них. Получить сверхтонкие срезы клеток позволяет специальный микрохирургический прибор — ультрамикротом.

Исследователи, работающие на электронном микроскопе, добились необыкновенных успехов и превзошли, пожалуй, знаменитого Левшу, сумевшего подковать блоху. Клетку диаметром около 15 микрометров, предварительно залитую особым быстро затвердевающим веществом аралдитом, нарезают ультрамикротомом на 750 тончайших срезов, каждый из которых не толще 0,02 микрометра!

Однако при использовании электронного микроскопа все наблюдения должны проводиться в вакууме, так как воздух представляет для электронов непреодолимое препятствие. Вакуум же приводит к немедленному обезвоживанию и гибели всех живых клеток.

Но исследователи смогли устранить и этот недостаток. Французские ученые из Института электронной микроскопии в Тулузе решили использовать более высокое напряжение для разгона потоков электронов. В обычном электронном микроскопе это напряжение составляет 100 000 вольт. Французы использовали напряжение 1 500 000 вольт, в результате чего скорость электронов приблизилась к скорости света. На пути исследователей возникло много технических трудностей: следовало оградить обслуживающий персонал от вредного воздействия рентгеновских лучей, образующихся при попадании электронов на металлические части аппарата; создать электромагнитные линзы, весящие 700 килограммов, и так далее. Кроме того, при столь высоком напряжении большую опасность представляет влажность воздуха, поэтому все сооружение пришлось поместить в металлическую сферу диаметром 24 метра. При ускорении, созданном в таком электронном микроскопе, электроны проникают не только через тончайший слой воздуха, но и через живые клетки. Конечно, продолжительное воздействие электронов повреждает клетки, а позднее и убивает их, но тем не менее какое-то время они остаются живыми и неизменными.

С помощью всех этих приборов ученые смогли проникнуть и в клетку гриба, узнать ее строение, открыть ее тайны.

Строение грибной клетки

Клетка гриба, как броней, одета твердой оболочкой, основу которой составляет клеточная стенка. Она содержит сахара, белки, жиры, нуклеиновые кислоты, а также хитин (подобно наружному скелету насекомых и ракообразных).[4] В наружных частях клеточной оболочки часто можно обнаружить темные пигменты — меланины. К внутренней стороне клеточной стенки примыкает цитоплазматическая мембрана — плазмалемма. Одна из основных ее функций — поддерживать в клетке определенное осмотическое давление. Сквозь плазмалемму внутрь клетки поступают вещества, служащие источником питания, а наружу выделяются продукты химической активности клетки. Таким образом, цитоплазматическая мембрана играет роль пограничной стражи, которая пропускает внутрь клетки или выдворяет из нее определенные вещества, причем сама активно способствует этому процессу. Важнейшей структурой клетки является эндоплазматический ретикулум — система канальцев и пузырьков (цистерн). Различают два типа эндоплазматического ретикулума — гладкий и зернистый. На поверхности последнего расположены рибосомы — основные центры синтеза белка.

В клетках грибов, как и в клетках растительных и животных организмов, обнаружены митохондрии — особые энергетические станции клеток. В них протекают процессы химического преобразования веществ, благодаря которым клетка приобретает необходимую ей энергию.

Важный жизненный центр клетки — ядро. Это — "планирующий орган", управляющий деятельностью клетки и обеспечивающий передачу наследственных свойств от одного поколения другому. Ответственность за эту операцию несут, как уже говорилось, молекулы дезоксирибонуклеиновой кислоты (ДНК), содержащиеся в ядре. У грибов встречаются одноядерные (монокарионы), двухъядерные (дикарионы) и многоядерные (мультикарионы) клетки. Ядра грибных клеток обладают интересной особенностью — они могут передвигаться из старых частей мицелия к растущим. Механизм этого движения пока еще до конца не изучен.

В клетках гриба есть свои кладовые, где хранятся запасы питательных веществ; гликоген в виде гранул содержится в цитоплазме, там же можно обнаружить капли масла и волютин (питательное вещество, состоящее из полифосфатов, а также соединений, близких к нуклеиновым кислотам).

Что можно увидеть в лаборатории

Читателя, случайно попавшего в лабораторию миколога или микробиолога, поразит обилие стеклянных сосудов различной формы — цилиндрических, шарообразных, плоских, больших и маленьких — для выращивания грибов, для приготовления питательных сред и различных реактивов, необходимых для изучения грибов. Многие сосуды названы по имени ученых, впервые применивших их в своей работе. Здесь можно увидеть колбы Пастера, Эрленмейера и Бунзена, матрас Ру, чашки Петри и Коха.

Мытье лабораторной посуды — это искусство, которым должен овладеть каждый ученый, проводящий лабораторный эксперимент. От чистоты посуды часто зависит судьба и успех опыта. В настоящее время промышленность облегчает работу ученых. Например, налажен выпуск стерильных чашек Петри одноразового пользования из пластмассы, упакованных в полиэтиленовые пакеты.


Рекомендуем почитать
Наука «Звёздных Войн»

«Звёздные Войны» — это уникальная смесь научной фантастики и сказки. Мы удивляемся разнообразию существ и технологий, возможностям джедаев и тайне Силы. Но что из описанного в «Звёздных Войнах» основано на реальной науке? Можем ли мы увидеть, как некоторые из необыкновенных изобретений материализуются в нашем мире? «Наука «Звёздных Войн» рассматривает с научной точки зрения различные вопросы из вселенной «Звёздных Войн», относящиеся к военным действиям, космическим путешествиям и кораблям, инопланетным расам и многому другому.


Интернет животных. Новый диалог между человеком и природой

Еще в древности люди познавали мир, наблюдая за животными и анализируя их поведение. Теперь же, в XXI веке, мы можем делать это совсем на другом уровне. Интернет животных – важнейшее достижение человечества – решает сразу несколько проблем. Во-первых, при помощи него мы становимся ближе к животному миру и лучше понимаем братьев наших меньших. Во-вторых, благодаря этой сенсорной сети мы получаем доступ к новым знаниям и открытиям. В книге представлен подробный анализ «фундаментальных перемен, которые сыграют не меньшую роль для человеческого самосознания, чем открытие жизни на других планетах».


Иван Александрович Стебут, 1833–1923

Настоящая книга посвящена жизни и деятельности выдающегося русского агронома И. А. Стебута (1833— 1923). Свыше полувека он занимал наиболее видное место среди деятелей русской агрономии. С именем Стебута связаны последние годы жизни первого сельскохозяйственного высшего учебного заведения в нашей стране — Горыгорецкого земледельческого института (ныне Белорусская сельскохозяйственная академия) и первые тридцать лет жизни Петровской академии (ныне Московская сельскохозяйственная Академия имени К. А. Тимирязева), в которой он возглавлял кафедру земледелия.


Знание-сила, 1997 № 01 (835)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 1998 № 03 (849)

Ежемесячный научно-популярный научно-художественный журнал для молодежи.


Знание-сила, 1998 № 02 (848)

Ежемесячный научно-популярный и научно-художественный журнал дли молодежи.