Гравитация. Последнее искушение Эйнштейна - [78]
Существование циклической Вселенной — это довольно смелая гипотеза. Сама по себе теория струн ещё не до конца доработана. Она может оказаться как частью более глубокой теории, объясняющей истоки пространства, времени и всей Вселенной, так и полной чушью. Но специалисты по теории струн верят, что находятся на правильном пути — в первую очередь потому, что это вообще единственный возможный путь, ведь, несмотря на многочисленные усилия, никому ещё не удалось создать другую «теорию всего», объединяющую фундаментальные силы. Но у сторонников теории струн есть и ещё одно основание для оптимизма: потенциально она может объяснить парадокс существования самых загадочных объектов во Вселенной — чёрных дыр.
Чёрные дыры
Согласно теории гравитации Эйнштейна, в сердце чёрных дыр материя сжимается до бесконечной плотности, и все известные нам законы физики перестают работать. Но сингулярность — не единственное место в чёрной дыре, которое ставит под сомнение наше понимание реальности.
Как уже упоминалось выше, горизонт событий — это воображаемая мембрана, окружающая сингулярность и обозначающая точку невозврата для попадающего на неё света и материи. Когда мы говорим о размерах чёрной дыры, мы имеем в виду диаметр горизонта событий.
В 1974 году Стивен Хокинг шокировал научный мир заявлением, что чёрные дыры на самом деле не чёрные. К этому выводу он пришёл, проанализировав квантовые процессы поблизости от чёрной дыры. Давайте вспомним, что в соответствии с принципом неопределённости Гейзенберга вакуум порождает пары частиц и античастиц. Эти виртуальные частицы живут крайне недолго, аннигилируя и исчезая всего за доли секунды. Но Хокинг понял, что вблизи горизонта событий чёрной дыры должно происходить и происходит нечто совершенно иное.
Одна половина пары «частица–античастица» может начать двигаться прочь от чёрной дыры, пытаясь избежать её притяжения, а вторая — упасть в неё через горизонт событий. После этого она уже не вырвется наружу, чтобы столкнуться со своей парой и аннигилировать. Частица, которой удалось сбежать, из виртуальной превратится в реальную с куда более долгим сроком жизни.
Хокинг понял, что подобные процессы постоянно происходят вокруг горизонта чёрной дыры. Из-за того что одиночные частицы постоянно рвутся прочь от неё, возникает излучение Хокинга.
Определяющей характеристикой чёрной дыры является тот факт, что ничто попавшее в неё не может вырваться наружу. Излучение Хокинга испускает не сама дыра, так как его частицы в неё не попадают. Оно рождается в вакууме на границе горизонта событий.
Но энергия, которая создаёт излучение Хокинга, должна откуда-то браться, и единственным её источником может быть гравитация самой чёрной дыры. Частицы постоянно утекают в открытый космос, и гравитационное поле чёрной дыры ослабевает, заставляя её постепенно уменьшаться, или «испаряться».
Чем меньше чёрная дыра, тем сильнее её излучение Хокинга.[266] Для чёрных дыр, имеющих звёздную массу, и сверхмассивных чёрных дыр, находящихся в центре большинства галактик, эта утечка частиц настолько минимальна, что предполагаемый срок жизни дыр превышает текущий возраст Вселенной. Но по мере того, как чёрная дыра уменьшается, её излучение Хокинга становится всё сильнее и сильнее. У крошечной чёрной дыры (а этой стадии достигнет каждая дыра, прежде чем исчезнуть окончательно) оно будет ослепительно-ярким. Что и говорить, чёрные дыры умирают с блеском.
По определению всё то, что светится, имеет температуру. Это верно и для чёрных дыр, сверкающих излучением Хокинга. С первого взгляда это предположение кажется безумным, потому что чёрная дыра — это не что иное, как бездонный колодец в пространстве-времени, не содержащий никакого источника тепла. Но она разогревается не из-за каких-то своих внутренних свойств, а из-за внешних квантовых процессов, протекающих в окружающем её вакууме.
Тот факт, что излучение Хокинга заставляет чёрную дыру испаряться и в итоге приводит к её исчезновению, создаёт значительный научный парадокс. Фундаментальный закон физики гласит, что информацию нельзя создать или уничтожить. Возьмём, к примеру, Луну. Используя законы Ньютона, мы можем предсказать её завтрашнее положение на небе, исходя из сегодняшнего. Значит, информация о её будущем местоположении заключена в информации о настоящем. Пока Луна движется по небосводу, мы не приобретаем и не теряем информацию — она остаётся в сохранённом виде. С другой стороны, при «испарении» чёрной дыры информация утрачивается.
Чёрная дыра звёздной массы когда-то была звездой. Для того чтобы точно определить параметры такого небесного тела, требуется большой объём информации, например, о типе, местоположении и скорости каждого её атома. Но когда чёрная дыра полностью «испаряется» из-за излучения Хокинга, от неё ничего не остаётся. Куда же исчезает информация? Вот так вкратце формулируется информационный парадокс чёрных дыр.
Этот парадокс настолько удивителен, что сам Хокинг много лет верил, будто чёрные дыры действительно нарушают один из самых важных принципов физики: «Я полагал, что информация в чёрной дыре действительно исчезает, и это было моей самой большой ошибкой — или по крайней мере самой большой чушью в науке».
Маркус Чаун и Говерт Шиллинг, известные журналисты и популяризаторы науки, приглашают читателя на уникальную экскурсию по Вселенной, во время которой они в непринужденной форме ответят на самые принципиальные вопросы, связанные с окружающим нас миром. Начиная с самых простых: «почему ночью небо темное? почему звезды мерцают? что такое метеориты?», они внедрятся в круг самых сложных проблем космологии — как зарождалась Вселенная, как появляются сверхновые звезды, что такое квазары и черные дыры, что было до Большого взрыва, одни ли мы во Вселенной.
Маркус Чоун — британский ученый, журналист и писатель, один из лучших популяризаторов науки сегодняшнего дня. Мало кто умеет так, как он — просто, доходчиво, с легким юмором, — рассказать о сложнейших научных представлениях, будь то принципы квантовой механики или космологические концепции.В своей новой книге «Чудеса обычных вещей» Маркус Чоун демонстрирует удивительный, обманчиво простой принцип знакомства с миром современной физики: он берет самые обычные вещи и явления и заставляет их рассказывать о тайнах мироздания, о загадках микро- и макромира.Под пером Маркуса Чоуна обыкновенное оконное стекло повествует о вероятностях, управляющих Вселенной.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.