Гравитация. Последнее искушение Эйнштейна - [74]
Стандартная модель не объясняет, зачем природа наделила каждый свой строительный блок двумя партнёрами, а также почему распределила между ними массу таким образом, как мы это наблюдаем. Можно предположить, что это не последнее слово природы, а лишь приблизительное видение более глубоких процессов, которые нам ещё предстоит открыть. Но эти отклонения не должны отвлекать нас от важного факта: принципы специальной теории относительности и квантовой теории налагают на вероятности такие строгие ограничения, что в результате определяют почти всё в физическом мире. «Интересно, был ли у Бога хоть какой-то выбор при создании мира?» — писал Эйнштейн. Квантовая теория и специальная теория относительности подсказывают нам, что ответ на этот вопрос отрицательный.
Как уже упоминалось в начале этой главы, некоторые люди считают физиков-теоретиков фантазёрами, которые заняты лишь тем, что воображают удивительные и странные вещи. Проверить их правоту экспериментальным путём невозможно, а значит, нельзя и доказать, что они врут. Но тот факт, что специальная теория относительности и квантовая теория почти полностью описывают процессы в окружающей нас Вселенной, может означать лишь одно: в целом они верны. Это, в свою очередь, делает их тугой смирительной рубашкой, сковывающей действия физиков, которые пытаются докопаться до более глубокой теории. Квантовая теория и специальная теория относительности оставляют так мало места для манёвра, что двигаться в нём почти невозможно. «Почти все твои попытки обречены на провал. Большинство теорий, рождаемых физиками, умирает во младенчестве», — говорит Аркани-Хамед.
В 2017 году существовал лишь один кандидат на звание более глубокой теории, соответствующей всем ограничениям, — теория струн.[257]
Струны в космосе
Теория струн, также известная как теория суперструн, возникла в результате попытки понять, что собой представляет сильное ядерное взаимодействие. Сильным его называют не просто так. Для того чтобы оторвать два кварка друг от друга, требуется столько энергии, что в пространстве между ними при этом спонтанно возникает пара «кварк–антикварк». Представьте себе, что вы пытаетесь подойти к другу в толпе, но между вами постоянно втискиваются другие люди. Вот так чувствуют себя кварки. Сильное ядерное взаимодействие удерживает их в границах протонов и нейтронов в атомных ядрах и делает выделение единичного кварка невозможным.[258]
Что странно в сильном ядерном взаимодействии, так это то, что оно растёт по мере увеличения расстояния между кварками. Сравните его с силой притяжения (чем дальше два массивных тела друг от друга, тем гравитация слабее) или магнетизмом (если увеличить расстояние между магнитами, он тоже ослабнет). Причина размывания этих сил в том, что они распространяются во всех направлениях.[259] Но в том случае, если сила ограничена узким каналом между двумя телами, она действительно может расти по мере их расхождения, как при растяжении пружины или резиновой ленты.[260] Точно так же это работает и в случае сильного ядерного взаимодействия между кварками. И это их поведение стало первым признаком того, что фундаментальные строительные блоки Вселенной могут быть похожи не на крошечные точки, а на одномерные энергетические струны.
В данной теории, пионером которой в 1968 году стал итальянский физик Габриэле Венециано, эти струны вибрируют, как на музыкальном инструменте, и каждая вибрация соответствует определённой фундаментальной частице.[261] «По сути, теория струн описывает пространство и время, массу и энергию, гравитацию и свет, всё Божье творение как музыку», — говорит писатель Рой Х. Уильямс.[262]
Быстро вибрирующая скрипичная струна имеет больше энергии, чем вибрирующая медленно. Соответственно, суперструна с быстрой вибрацией соответствует субатомной частице с высоким значением массы-энергии, например топ-кварку, а с медленной вибрацией — с низким, например электрону. Однако из-за сложности математических вычислений физики не могут быть до конца уверены, что все возможные типы вибраций соответствуют всем известным фундаментальным частицам.
Струны могут быть либо разомкнутыми, либо кольцеобразными, и эта конфигурация определяет их взаимодействие с другими струнами.
Теория струн автоматически соотносит каждую частицу с полуцелым спином (частицу-переносчицу) с частицей с целым спином (материей) и наоборот. Именно потому, что она включает в себя суперсимметрию, эта теория называется теорией суперструн. Как уже говорилось, учёным ещё не удалось обнаружить ни одного суперпартнёра существующих частиц, хотя приверженцы теории струн полагают, что они просто слишком массивны, чтобы их можно было получить в БАК.
Теория струн устраняет потенциальный конфликт между двумя важнейшими идеями физики: редукционизмом и унификацией. Первая концепция предполагает, что все явления в мире происходят в результате взаимодействия небольшого количества фундаментальных строительных блоков (в Стандартной модели — кварков и лептонов). Вторая утверждает, что несхожие природные явления представляют собой лишь разные грани одного фундаментального процесса, например электрическое и магнитное поля являются всего лишь аспектами единого электромагнитного поля.
Маркус Чаун и Говерт Шиллинг, известные журналисты и популяризаторы науки, приглашают читателя на уникальную экскурсию по Вселенной, во время которой они в непринужденной форме ответят на самые принципиальные вопросы, связанные с окружающим нас миром. Начиная с самых простых: «почему ночью небо темное? почему звезды мерцают? что такое метеориты?», они внедрятся в круг самых сложных проблем космологии — как зарождалась Вселенная, как появляются сверхновые звезды, что такое квазары и черные дыры, что было до Большого взрыва, одни ли мы во Вселенной.
Маркус Чоун — британский ученый, журналист и писатель, один из лучших популяризаторов науки сегодняшнего дня. Мало кто умеет так, как он — просто, доходчиво, с легким юмором, — рассказать о сложнейших научных представлениях, будь то принципы квантовой механики или космологические концепции.В своей новой книге «Чудеса обычных вещей» Маркус Чоун демонстрирует удивительный, обманчиво простой принцип знакомства с миром современной физики: он берет самые обычные вещи и явления и заставляет их рассказывать о тайнах мироздания, о загадках микро- и макромира.Под пером Маркуса Чоуна обыкновенное оконное стекло повествует о вероятностях, управляющих Вселенной.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.