Гравитация. Последнее искушение Эйнштейна - [64]

Шрифт
Интервал

Необходимость в создании квантовой теории вытекала ещё из теории электромагнетизма Максвелла, которая описывает все электрические и магнитные явления в виде единой стройной системы. При этом теория Максвелла содержит два парадокса, и оба они связаны со светом. Разрешение первого из них — как скорость света в вакууме может быть одинаковой вне зависимости от скорости движения наблюдателя — привело к созданию специальной теории относительности Эйнштейна, одному из важнейших событий в истории физики XX века. Разрешение второго тоже произвело революцию: благодаря ему возникла квантовая теория.

Второй парадокс возникает потому, что теория Максвелла допускает существование электромагнитных волн любого размера. Соответственно, помимо видимого света, длина волны которого составляет чуть менее тысячной доли миллиметра, во Вселенной имеются и волны большей (радиоволны, открытые Генрихом Герцем в 1888 году) и меньшей длины (рентгеновские волны, обнаруженные в 1895 году Вильгельмом Рентгеном). Размер волны связан с энергией, которую она переносит: медленные радиоволны имеют гораздо меньшую энергию, чем волны видимого света, а те, в свою очередь, менее энергичны, чем стремительные рентгеновские волны.

В горячем атомном газе световые волны постоянно испускаются и поглощаются. По прохождении достаточного количества времени в таком случае возникают все возможные виды световых волн. В подобном состоянии «теплового равновесия» энергия равномерно распределена между волнами любой длины. Здесь-то и возникает проблема. У длины волны существует верхний предел, который задаётся параметрами контейнера, содержащего газ. А вот нижнего предела у неё нет. Это значит, что, какую бы волну мы ни выбрали, количество волн длиннее неё будет конечным, а волн короче её — бесконечным.

Как уже говорилось выше, при тепловом равновесии энергия должна быть равномерно распределена между всеми волнами. Поскольку коротких волн оказывается существенно больше, чем длинных, бо́льшая часть энергии всегда будет приходиться на них. Соответственно, в конце концов вся энергия горячего газа перейдёт к самому энергичному излучению — рентгеновскому.

До открытия рентгеновских лучей в 1895 году излучением, обладавшим максимальной энергией, считалось ультрафиолетовое. Поэтому данный парадокс начали называть ультрафиолетовой катастрофой.[223]

Нестыковка становится особенно очевидной, если проанализировать наше Солнце. Согласно максвелловской теории наша звезда должна постоянно выбрасывать в космос горячие и слепящие пучки рентгеновских лучей. Почему же она всё ещё светит?

«Каждый парадокс приносит пользу», — писал немецкий математик Готфрид Лейбниц. В 1900 году его земляк, физик Макс Планк, доказал его правоту.

Кванты

В конце XIX века последним достижением в области электричества считалась лампочка, а главный технический и экономический вопрос звучал так: как максимизировать количество видимого света, выделяемого нитью накаливания внутри неё? Ответить на него было невозможно, ведь лучшая существовавшая на тот момент теория света предполагала, что такая нить, как и горячий газ в нашем Солнце, должна испускать весь свой свет в виде вспышек рентгеновских лучей.

Науке требовался новый способ, чтобы обуздать свет и избежать при этом безумного сценария ультрафиолетовой катастрофы. И после долгих и мучительных размышлений Планк его нашёл.

В соответствии с теорией Максвелла осциллирующий электрический заряд, например электрон, испускает свет с частотой своей осцилляции. На самом деле в теории говорится, что ускоренный заряд выделяет электромагнитное излучение, но осциллирующий заряд — это то же самое, что постоянно ускоряющийся. Планк представил себе контейнер, стенки которого состоят из электронов, подвешенных, как грузы на пружинах. Сегодня мы знаем, что осциллирующие электроны Планка существуют внутри атомов, но в конце XIX века не все физики были уверены даже в том, существуют ли сами атомы. Тем не менее образ, созданный Планком, вышел достаточно достоверным.

Если нагреть такой контейнер, то тепловая энергия заставит пружины осциллировать и испускать осциллирующие световые волны с одинаковой частотой. Эти волны пересекут контейнер и будут поглощены другими осциллирующими волнами, которые, в свою очередь, испустят осциллирующие световые волны с собственной частотой. В результате этого бесконечного взаимодействия тепловая энергия будет равномерно распределена между всеми пружинами и световыми волнами. В этой ситуации на световые волны с самой высокой частотой придётся бо́льшая часть энергии, потому что они будут возникать существенно чаще других.

Планк понял, что катастрофы можно избежать, если осциллирующие пружины смогут выделять и поглощать не любое количество энергии, а лишь производную от некоего базового значения. Он предположил, что это значение равнялось частоте (f), умноженной на ℎ — очень маленькое число (частота определяется как количество осцилляций в секунду).

Задумайтесь, как глупо это звучит: как если бы спортсмен мог прыгнуть только на высоту, кратную 0,5 метра. Он смог бы преодолеть барьер в 0,5, или 1,0, или 1,5 метра, но расстояния 0,75, 1,2 или 1,81 метра ему бы не покорились.


Еще от автора Маркус Чоун
Твиты о вселенной

Маркус Чаун и Говерт Шиллинг, известные журналисты и популяризаторы науки, приглашают читателя на уникальную экскурсию по Вселенной, во время которой они в непринужденной форме ответят на самые принципиальные вопросы, связанные с окружающим нас миром. Начиная с самых простых: «почему ночью небо темное? почему звезды мерцают? что такое метеориты?», они внедрятся в круг самых сложных проблем космологии — как зарождалась Вселенная, как появляются сверхновые звезды, что такое квазары и черные дыры, что было до Большого взрыва, одни ли мы во Вселенной.


Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной

Маркус Чоун — британский ученый, журналист и писатель, один из лучших популяризаторов науки сегодняшнего дня. Мало кто умеет так, как он — просто, доходчиво, с легким юмором, — рассказать о сложнейших научных представлениях, будь то принципы квантовой механики или космологические концепции.В своей новой книге «Чудеса обычных вещей» Маркус Чоун демонстрирует удивительный, обманчиво простой принцип знакомства с миром современной физики: он берет самые обычные вещи и явления и заставляет их рассказывать о тайнах мироздания, о загадках микро- и макромира.Под пером Маркуса Чоуна обыкновенное оконное стекло повествует о вероятностях, управляющих Вселенной.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.