Гравитация. Последнее искушение Эйнштейна - [28]

Шрифт
Интервал

Вот тут-то и начались загадки.

Факт наличия эллиптической орбиты не соответствовал результатам наблюдений. Как только она была рассчитана, Уран тут же начал отклоняться от неё. Шли годы, наблюдений становилось всё больше, а Уран отклонялся всё сильнее.

Лишь немногие сомневались в законе всемирного тяготения Ньютона. Его успех за последние два столетия был таким всеобъемлющим и масштабным, что его считали чем-то вроде Священного Писания. Учёные предположили, что за Ураном может находиться ещё одна планета, чья гравитация и сбивает Уран с правильного эллиптического пути.

Охота на невидимую планету

В 1841 году Джон Кауч Адамс, математический гений из Корнуолла, Англия, решил вычислить, где именно в Солнечной системе должна находиться новая планета, чтобы она могла оказывать наблюдаемое воздействие на Уран.[88] Его расчёты были ужасающе сложными, но уже через четыре года он был готов представить результаты своего труда королевскому астроному Джеймсу Челлису. Тот, однако, не принял Адамса всерьёз. Помимо прочего, доверие к нему подрывала его привычка постоянно уточнять свои расчёты и то и дело менять предсказания относительно местоположения новой планеты.

Адамс не знал, что в то же самое время во Франции Леверье проводил похожие вычисления. Чтобы упростить пугающе сложные расчёты, Леверье сделал несколько обоснованных допущений. Например, он предположил, что новая планета должна находиться далеко от Солнца, иначе астрономы уже заметили бы её. Он также решил, что её масса должна быть сравнима с массой Урана, который по этому показателю примерно в 15 раз превышает Землю. Наконец, Леверье решил, что невидимая планета должна двигаться по орбите вокруг Солнца в той же плоскости, что и другие планеты.[89]

Удивительно, но Леверье, как и Адамса, не принимали всерьёз. Директор Парижской обсерватории Франсуа Араго не считал поиски новой планеты первоочередной задачей. Когда Леверье понял, что не добьётся от Араго точных сроков для выполнения своей задачи, он потерял терпение и 18 сентября 1846 года отослал свои расчёты, указывающие на примерное местонахождение планеты, в Берлин. Ещё через пять дней Иоганн Галле, единственный человек, поверивший Леверье, вошёл в историю как первооткрыватель Нептуна.

Как и Уран, Нептун наблюдался и ранее, но его не принимали за планету. Его едва можно разглядеть невооружённым глазом. Существуют некоторые свидетельства того, что уже в декабре 1612 года в Падуе Галилей видел Нептун в свой недавно созданный телескоп, но посчитал его просто звездой.

После обнаружения Нептуна между Англией и Францией разгорелся спор о том, кого именно считать его первооткрывателем. Интересно, что этот спор никак не повлиял на отношения между самими Адамсом и Леверье, хотя последнего многие считали заносчивым и агрессивным человеком. После первой же встречи они стали друзьями — возможно, из уважения к математическим талантам друг друга, а возможно, из-за усилий, которые обоим пришлось приложить, чтобы им поверили. Сегодня открытие Нептуна приписывают Адамсу и Леверье в равной степени.

Обнаружение Урана было настоящей сенсацией. Это была первая планета, открытая в эру телескопов и науки. Расстояние от Урана до Солнца в два раза больше, чем от Солнца до Сатурна, а значит, всего за один день размеры известной человечеству Солнечной системы увеличились вдвое. Открытие Нептуна также было сенсационным, но в несколько другом смысле. Если Уран был замечен астрономами случайно, существование Нептуна, включая его массу, внешний вид и местоположение, было точно предсказано. Наука наделила человека возможностями божества. Закон Ньютона теперь не только объяснял то, что мы видим, но и предсказывал невидимое.

И в XXI веке эта история может повториться.

Девятая планета

В начале 2016 года два астронома из США поразили весь научный мир, заявив, что вокруг Солнца по удалённой орбите обращается ещё одна, ранее не известная планета, масса которой в десять раз превышает земную. До тех пор пока ей не найдут имени получше, Константин Батыгин и Майк Браун из Калифорнийского технологического института в Пасадине предложили называть её просто девятой планетой. До 2006 года девятой планетой был Плутон, но затем его понизили в должности до статуса карликовой планеты.[90]

Доказательства, которые привели Батыгин и Браун, касаются не аномального движения других планет, а странного поведения объектов в поясе Койпера. Как мы уже упоминали, этот пояс состоит из десятков тысяч ледяных обломков, оставшихся после создания планет и вращающихся вокруг Солнца за орбитой Нептуна.[91] Батыгин и Браун отметили, что шесть самых далёких объектов пояса Койпера имеют очень вытянутые орбиты, которые не растянуты в разные стороны, как можно было бы предположить, а вместо этого направлены примерно в одну точку. Кроме того, они имеют одинаковое отклонение (примерно 30 градусов) от плоскости, в которой движутся остальные восемь планет. Если верить Батыгину и Брауну, эти аномалии объясняются гравитационным воздействием далёкой невидимой планеты.[92]

Данная планета должна быть не только огромной, но и очень далёкой — расстояние от неё до Солнца должно в 20 раз превышать расстояние между Солнцем и Нептуном. Батыгин и Браун предполагают, что девятая планета движется по крайне вытянутой орбите, то приближаясь к Солнцу на расстояние, равное семи расстояниям до Нептуна, то удаляясь на дистанцию, превышающую расстояние до Нептуна в 30 раз. Из-за такой длинной орбиты она делает полный оборот вокруг Солнца не раз в 165 лет, как Нептун, а раз в 15 000 лет.


Еще от автора Маркус Чоун
Твиты о вселенной

Маркус Чаун и Говерт Шиллинг, известные журналисты и популяризаторы науки, приглашают читателя на уникальную экскурсию по Вселенной, во время которой они в непринужденной форме ответят на самые принципиальные вопросы, связанные с окружающим нас миром. Начиная с самых простых: «почему ночью небо темное? почему звезды мерцают? что такое метеориты?», они внедрятся в круг самых сложных проблем космологии — как зарождалась Вселенная, как появляются сверхновые звезды, что такое квазары и черные дыры, что было до Большого взрыва, одни ли мы во Вселенной.


Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной

Маркус Чоун — британский ученый, журналист и писатель, один из лучших популяризаторов науки сегодняшнего дня. Мало кто умеет так, как он — просто, доходчиво, с легким юмором, — рассказать о сложнейших научных представлениях, будь то принципы квантовой механики или космологические концепции.В своей новой книге «Чудеса обычных вещей» Маркус Чоун демонстрирует удивительный, обманчиво простой принцип знакомства с миром современной физики: он берет самые обычные вещи и явления и заставляет их рассказывать о тайнах мироздания, о загадках микро- и макромира.Под пером Маркуса Чоуна обыкновенное оконное стекло повествует о вероятностях, управляющих Вселенной.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.