Гидравлика - [8]

Шрифт
Интервал

Изучение гидравлики как таковой практически начинается с уравнения Эйлера, которое служит исходным пунктом для выхода на другие выражения.

Попробуем вывести это уравнение. Пусть имеем бесконечно малый параллелепипед с гранями dxdydz в невязкой жидкости с плотностью ρ. Он заполнен жидкостью и движется как составная часть потока. Какие силы действуют на выделенный объект? Это силы массы и силы поверхностных давлений, которые действуют на dV = dxdydz со стороны жидкости, в которонаходится выделенный dV. Как силы массы пропорциональны массе, так и поверхностные силы пропорциональны площадям, на которые оказывается давление. Эти силы направлены к граням вовнутрь по нормали. Определим математическое выражение этих сил.

Назовем, как и при получении уравнения неразрывности, грани параллелепипеда:

1, 2 – перпендикулярные к оси О и параллельные оси О>Y;

3, 4 – перпендикулярные к оси O>Y и параллельные оси О;

5, 6 – перпендикулярные к оси O>Z и параллельные оси О.

Теперь нужно определить, какая сила приложена к центру масс параллелепипеда.

Сила, приложенная к центру массы параллелепипеда, которая и заставляет эту жидкость совершать движение, есть сумма найденных сил, то есть


Получили уравнение движения параллелепипеда с dV>1 по направлению оси Х.

Делим (1) на массу ρdxdydz:


Полученная система уравнений (2) есть искомое уравнение движения невязкой жидкости – уравнение Эйлера.

К трем уравнениям (2) добавляются еще два уравнения, поскольку неизвестных пять, и решается система из пяти уравнений с пятью неизвестными: одним из двух дополнительных уравнений является уравнение неразрывности. Еще одним уравнением является уравнение состояния. Например, для несжимаемой жидкости уравнением состояния может быть условие ρ = const.

Уравнение состояния должно быть выбрано таким образом, чтобы оно содержало хотя бы одно из пяти неизвестных.

23. Уравнение Эйлера для разных состояний

Уравнение Эйлера для разных состояний имеет разные формы записи. Поскольку само уравнение получено для общего случая, то рассмотрим несколько случаев:

1) движение неустановившееся.


2) жидкость в покое. Следовательно, Ux = Uy = Uz = 0.

В таком случае уравнение Эйлера превращается в уравнение равномерной жидкости. Это уравнение также дифференциальное и является системой из трех уравнений;

3) жидкость невязкая. Для такой жидкости уравнение движения имеет вид


где Fl – проекция плотности распределения сил массы на направление, по которому направлена касательная к линии тока;

dU/dt – ускорение частицы

Подставив U = dl/dt в (2) и учтя, что (∂U/∂l)U = 1/2(∂U>2/∂l), получим уравнение.

Мы привели три формы уравнения Эйлера для трех частных случаев. Но это не предел. Главное – правильно определить уравнение состояния, которое содержало хотя бы один неизвестный параметр.

Уравнение Эйлера в сочетании с уравнением неразрывности может быть применено для любого случая.

Уравнение состояния в общем виде:


Таким образом, для решения многих гидродинамических задач оказывается достаточно уравнения Эйлера, уравнения неразрывности и уравнения состояния.

С помощью пяти уравнений легко находятся пять неизвестных: p, Ux, Uy, Uz, ρ.

Невязкую жидкость можно описать и другим уравнением

24. Форма Громеки уравнения движения невязкой жидкости

Уравнения Громеки – попросту другая, несколько преобразованная форма записи уравнения Эйлера.

Например, для координаты x


Чтобы его преобразовать, используют уравнения компонентов угловой скорости для вихревого движения.

Преобразовав точно так же y-вую и z-вую компоненту, окончательно приходим к форме Громеко уравнения Эйлера

Уравнение Эйлера было получено российским ученым Л. Эйлером в 1755 г., и преобразовано в вид (2) опять же российским ученым И. С. Громекой в 1881 г

Уравнение Громеко (под воздействием массовых сил на жидкость):


Поскольку

– dП = Fxdx + Fydy + Fzdz, (4)

то для компонентов Fy, Fz можно вывести те же выражения, что и для Fx, и, подставив это в (2), прийти к (3).

25. Уравнение Бернулли

Уравнение Громеки подходит для описания движения жидкости, если компоненты функции движения содержат какуююто вихревую величину. Например, эта вихревая величина содержится в компонентах ωx, ωy,ωz угловой скорости w.

Условием того, что движение является установившимся, является отсутствие ускорения, то есть условие равенства нулю частных производных от всех компонентов скорости:


Если теперь сложить


то получим


Если проецировать перемещение на бесконечно малую величину dl на координатные оси, то получим:

dx = Uxdt; dy = Uy dt; dz = Uzdt. (3)

Теперь помножим каждое уравнение (3) соответственно на dx, dy, dz, и сложим их:


Предположив, что правая часть равна нулю, а это возможно, если вторая или третья строки равны нулю, получим:


Нами получено уравнение Бернулли

26. Анализ уравнения Бернулли

это уравнение есть не что иное, как уравнение линии тока при установившемся движении.

Отсюда следуют выводы:

1) если движение установившееся, то первая и третья строки в уравнении Бернулли пропорциональны.

2) пропорциональны строки 1 и 2, т. е.

Уравнение (2) является уравнением вихревой линии. Выводы из (2) аналогичны выводам из (1), только линии тока заменяют вихревые линии. Одним словом, в этом случае условие (2) выполняется для вихревых линий;


Еще от автора М А Бабаев
Приборостроение

В книге вы найдете информативные ответы на все вопросы курса «Приборостроение» в соответствии с Государственным образовательным стандартом.


Рекомендуем почитать
Юный техник, 2015 № 04

Популярный детский и юношеский журнал.


Юный техник, 2015 № 03

Популярный детский и юношеский журнал.


Юный техник, 2014 № 02

Популярный детский и юношеский журнал.



Столярные и плотничные работы

Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.


Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г.

Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.


Финансовый менеджмент

В книге кратко изложены ответы на основные вопросы темы «Финансовый менеджмент». Издание поможет систематизировать знания, полученные на лекциях и семинарах, подготовиться к сдаче экзамена или зачета.Пособие адресовано студентам высших и средних образовательных учреждений, а также всем, интересующимся данной тематикой.


Неорганическая химия

Информативные ответы на все вопросы курса «Неорганическая химия» в соответствии с Государственным образовательным стандартом.


Уголовно-процессуальное право

В книге кратко изложены ответы на основные вопросы темы «Уголовно-процессуальное право». Издание поможет систематизировать знания, полученные на лекциях и семинарах, подготовиться к сдаче экзамена или зачета. Пособие адресовано студентам высших и средних образовательных учреждений, а также всем, интересующимся данной тематикой.


Налоговое право

Пособие содержит ответы на экзаменационные вопросы по учебной дисциплине «Налоговое право».Доступность изложения, актуальность информации, максимальная информативность, учитывая небольшой формат пособия, – все это делает шпаргалку незаменимым подспорьем при подготовке к сдаче зачета или экзамена.