Гидравлика - [7]

Шрифт
Интервал

Само полное ускорение можно назвать некоторой субстанцией, которая является суммой проекций

du>x/dt, du>y/dt, du>z/dt,

19. Уравнение неразрывности жидкости

Довольно часто при решении задач приходится определять неизвестные функции типа:

1) р = р (х, у, z, t) – давление;

2) n>x(х, у, z, t), ny(х, у, z, t), n>z(х, у, z, t) – проекции скорости на оси координат х, у, z;

3) ρ (х, у, z, t) – плотность жидкости.

Эти неизвестные, всего их пять, определяют по системе уравнений Эйлера.

Количество уравнений Эйлера всего три, а неизвестных, как видим, пять. Не хватает еще двух уравнений для того, чтобы определить эти неизвестные. Уравнение неразрывности является одним из двух недостающих уравнений. В качестве пятого уравнения используют уравнение состояния сплошной среды.


Формула (1) является уравнением неразрывности, то есть искомое уравнение для общего случая. В случае несжимаемости жидкости ∂ρ/dt = 0, поскольку ρ = const, поэтому из (1) следует:


поскольку эти слагаемые, как известно из курса высшей математики, являются скоростью изменения длины единичного вектора по одному из направлений X, Y, Z.

Что касается всей суммы в (2), то она выражает скорость относительного изменения объема dV.

Это объемное изменение называют пооразному: объемным расширением, дивергенцией, расхождением вектора скоростей.

Для струйки уравнение будет иметь вид:


где Q – количество жидкости (расход);

ω– угловая скорость струйки;

∂l – длина элементарного участка рассматриваемой струйки.

Если давление установившееся или площадь живого сечения ω = const, то ∂ω /∂t = 0, т. е. согласно (3),

ρ∂Q/∂l = 0, следовательно,

20. Характеристики потока жидкости

В гидравлике потоком считают такое движение массы, когда эта масса ограничена:

1) твердыми поверхностями;

2) поверхностями, которые разделяют разные жидкости;

3) свободными поверхностями.

В зависимости от того, какого рода поверхностями или их сочетаниями ограничена движущаяся жидкость, различают следующие виды потоков:

1) безнапорные, когда поток ограничен сочетанием твердой и свободной поверхностей, например, река, канал, труба с неполным сечением;

2) напорные, например, труба с полным сечением;

3) гидравлические струи, которые ограничены жидкой (как мы увидим позже, такие струйки называют затопленными) или газовой средой.

Живое сечение и гидравлический радиус потока. Уравнение неразрывности в гидравлической форме

Сечение потока, с которого все линии тока нормальны (т. е. перпендикулярны), называется живым сечением.

Чрезвычайно важное значение имеет в гидравлике понятие о гидравлическом радиусе


Для напорного потока с круглым живым сечением, диаметром d и радиусом r>0, гидравлический радиус выражается


При выводе (2) учли


Расход потока – это такое количество жидкости, которое проходит через живое сечение за единицу времени.

Для потока, состоящего из элементарных струек, расход:


где dQ = dω – расход элементарного потока;

U– скорость жидкости в данном сечении.

Q = uw.

21. Разновидность движения

В зависимости от характера изменения поля скоростей различают следующие виды установившегося движения:

1) равномерное, когда основные характеристики потока – форма и площадь живого сечения, средняя скорость потока, в том числе по длине, глубине потока (если движение безнапорное), – постоянны, не изменяются; кроме того, по всей длине потока вдоль линии тока местные скорости одинаковы, а ускорений вовсе нет;

2) неравномерное, когда ни один из перечисленных для равномерного движения факторов не выполняется, в том числе и условие параллельности линий токов.

Существует плавно изменяющееся движение, которое все же считают неравномерным движением; при таком движении предполагают, что линии тока примерно параллельны, и все остальные изменения происходят плавно. Поэтому, когда направление движения и ось ОХ сонаправлены, то пренебрегают некоторыми величинами

Ux ≈ U; Uy = Uz = 0. (1)

Уравнение неразрывности (1) для плавно изменяющегося движения имеет вид:


аналогично для остальных направлений.

Поэтому такого рода движение называют равномерным прямолинейным;

3) если движение нестационарное или неустановившееся, когда местные скорости с течением времени изменяются, то в таком движении различают следующие разновидности: быстро изменяющееся движение, медленно изменяющееся движение, или, как часто его называют, квазистационарное.

Давление разделяют в зависимости от количества координат в описывающих его уравнениях, на: пространственное, когда движение трехмерное; плоское, когда движение двухмерное, т. е. Uх, Uy или Uz равна нулю; одномерное, когда движение зависит только от одной из координат.

В заключение отметим следующее уравнение неразрывности для струйки, при условии, что жидкость несжимаемая, т. е. ρ= const, для потока это уравнение имеет вид:

Q = υ>1ω>1= υ2ω>2= … = υ>iω>i= idem, (3)

где υ>iω>i – скорость и площадь одного и того же сечения с номером i.

Уравнение (3) называют уравнением неразрывности в гидравлической форме.

22. Дифференциальные уравнения движения невязкой жидкости

Уравнение Эйлера служит одним из фундаментальных в гидравлике, наряду с уравнением Бернулли и некоторыми другими.


Еще от автора М А Бабаев
Приборостроение

В книге вы найдете информативные ответы на все вопросы курса «Приборостроение» в соответствии с Государственным образовательным стандартом.


Рекомендуем почитать
Современная архитектура Японии. Традиции восприятия пространства

Япония отличается особым отношением к традиционным ценностям своей культуры. Понимание механизмов актуализации и развития традиций, которыми пользуется Япония, может открыть новые способы сохранения устойчивости культуры, что становится в настоящее время все более актуальной проблемой для многих стран мира. В качестве центральных категорий, составляющих основу пространственного восприятия архитектуры в Японии, выделяется триада: пустота, промежуток, тень. Эти категории можно считать инвариантами культуры этой страны, т. к.


100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений.


CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии

Это 2-е издание популярной за рубежом и в России книги Владо Дамьяновски — всемирно известного эксперта в области видеонаблюдения и охранного телевидения, в которой обобщено около десяти лет теоретических исследований и более двадцати лет практического опыта. Книга ориентирована на довольно широкую читательскую аудиторию — менеджеров по системам безопасности, инсталляторов и интеграторов оборудования, консультантов, разработчиков и конечных пользователей. Кроме того, книга будет по достоинству оценена теми, кто собирается заняться системами видеонаблюдения и охранным телевидением.


Юный техник, 2005 № 02

Популярный детский и юношеский журнал.


Юный техник, 2007 № 01

Популярный детский и юношеский журнал.


Юный техник, 2009 № 12

Популярный детский и юношеский журнал.


Клиническая психология

Информативные ответы на все вопросы курса «Клиническая психология» в соответствии с Государственным образовательным стандартом.Студенту без шпаргалки никуда! Удобное оформление, ответы на все экзаменационные вопросы ведущих вузов России.


Уголовно-процессуальное право

В книге кратко изложены ответы на основные вопросы темы «Уголовно-процессуальное право». Издание поможет систематизировать знания, полученные на лекциях и семинарах, подготовиться к сдаче экзамена или зачета. Пособие адресовано студентам высших и средних образовательных учреждений, а также всем, интересующимся данной тематикой.


Неорганическая химия

Информативные ответы на все вопросы курса «Неорганическая химия» в соответствии с Государственным образовательным стандартом.


Налоговое право

Пособие содержит ответы на экзаменационные вопросы по учебной дисциплине «Налоговое право».Доступность изложения, актуальность информации, максимальная информативность, учитывая небольшой формат пособия, – все это делает шпаргалку незаменимым подспорьем при подготовке к сдаче зачета или экзамена.