Геометрия, динамика, вселенная - [52]

Шрифт
Интервал

Поведение Вселенной зависит от начального распределения классического поля FI, и в простейшей теории массивного скалярного поля FI с V(FI) = m**2 FI**2 / 2 оно может быть описано при помощи кривой на рис. 12.

Область начальных значений FI >~ M|**2 / m является

p запрещенной. Дело в том, что при V(FI) = m**2 FI**2 / 2 >~ M|**4 квантовые флюктуации метрики

p столь велики, что говорить о классическом пространстве-времени нельзя.

В областях пространства, в которых поле FI изначально находилось в интервале M| ~< FI ~< M|**2 / m, процесс

p p уменьшения поля FI идет очень медленно. Вселенная в это время расширяется приблизительно экспоненциально: a(t) ~ e**(H(FI)*t), где a(t) — масштабный фактор («радиус»)

_ /----,

2* \/ π*m*FI Вселенной, H(FI) = —--------. Эта стадия и

_ /---,

\ / 3*M|

\/ p называется стадией раздувания. В простейших моделях за время раздувания размер Вселенной вырастает в 10**(10**5) — 10**(10**10) раз (!).

Когда поле FI уменьшается до FI ~ M|, оно начинает быстро колебаться вблизи минимума V(FI), и при наличии взаимодействия этого поля с другими физическими полями накопившаяся в нем энергия переходит в тепло, т. е. Вселенная становится горячей.

Более детально изучение этого сценария[25], проведенное недавно, показало, что в области

- /----, M| * \ / M| / m ~< FI ~< M|**2 / m за счет квантовых p \/ p p эффектов генерируются неоднородности поля FI с очень большой длиной волны, причем амплитуда этих неоднородностей, возникающих за характерное время ^t ~ H**-1, больше, чем общее уменьшение поля FI за это же время из-за «скатывания» поля FI к минимуму V(FI). В результате за время ^t ~ H**-1 общий объем Вселенной увеличивается в e**3 раз (из-за раздувания), и почти в половине этого объема поле FI не уменьшается, а растет, причем скорость раздувания Вселенной в областях с увеличившимся полем FI тоже увеличивается.

Это приводит в конечном счете к тому, что бо́льшая часть объема Вселенной, в которой изначально была хотя бы одна — /----, область с FI >~ M| * \ / M| / m находится сейчас в p \/ p состоянии с максимально возможным полем FI (т. е. с FI ~ M|**2 / m) и продолжает раздуваться. В этих областях p расширение Вселенной никогда не кончается, т. е. Вселенная существует вечно. С другой стороны, те области Вселенной, в которых поле FI становится меньше, чем — /----, FI ~ M| * \ / M| / m, через некоторое время перестают p \/ p раздуваться, приобретая размер l >~ 10**(10**5) см. В одной из таких областей мы и живем.

Важной особенностью этого сценария являются сильные флюктуации метрики и всех других физических полей в большей части объема Вселенной, в которой сейчас FI ~ M|**2 / m.

p Эти флюктуации приводят к разбиению нашей Вселенной на экспоненциально большие области со всеми возможными типами вакуумных состояний (соответствующих локальным минимумам V(Ф, FI), где Ф — все остальные типы скалярных полей, присутствующих в теории) со всеми возможными типами компактификации «лишних» измерений. В каждой из таких областей свойства пространства-времени и низкоэнергетическая физика элементарных частиц будут различными.

В некоторых из этих областей размерность пространства-времени может быть отлична от четырех, вместо слабых, сильных и электромагнитных взаимодействий могут существовать взаимодействия совершенно других типов с другими константами связи, и т. д. Таким образом, согласно этому сценарию, глобальная геометрия нашего мира кардинально отличается от геометрии мира Фридмана. Вселенная оказывается состоящей как бы из отдельных фридмановских мини-вселенных с разными свойствами (рис. 13), и жизнь нашего типа может возникнуть лишь в части мини-вселенных, условия в которых достаточно хороши для этого (антропный принцип).

≡=РИС. 13

Сейчас еще трудно полностью оценить возможное значение обсуждаемых результатов. Новая картина мира приводит к иной постановке вопроса о том, возникла ли Вселенная из сингулярного состояния (или «из ничего»), или она существовала вечно, нескончаемо порождая все новые и новые области экспоненциально большого размера. Как бы там ни было, сейчас уже кажется все более правдоподобным, что наш мир в целом гораздо более многообразен, чем это можно было ожидать еще несколько лет назад. В основе этого многообразия лежит единство всех типов фундаментальных взаимодействий, высочайшая степень симметрии единых теорий, а также тот факт, что чем выше исходная симметрия, тем большим количеством разных способов она может быть нарушена. Что же касается раздувания Вселенной, то оно, с одной стороны, стимулирует переходы между состояниями с различными типами нарушения симметрии, а с другой стороны, экспоненциально увеличивает размеры возникающих областей с разными типами нарушения симметрии, т. е. с разными свойствами пространства и времени и разными свойствами элементарных частиц.

Подчеркнем, что в данном сценарии речь идет не о возникновении разных Вселенных, а о возникновении экспоненциально больших областей одной Вселенной с разными свойствами пространства-времени и элементарных частиц внутри каждой из них.

Д О П О Л Н Е Н И Е


Рекомендуем почитать
Покоренный электрон

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.