Геометрия, динамика, вселенная - [34]
Многие теоретики возлагают большие надежды на третий подход к «экспериментальному» исследованию фундаментальной физики при планковских параметрах. Крайне вероятно, что Метагалактика в процессе своей эволюции прошла через область, принадлежащую компетенции планковской физики. Изучение реликтовых следов этого процесса должно способствовать проверке планковской физики. Частично этот подход рассматривается в гл.3 нашей книги.
К сожалению, все отмеченные подходы к проверке планковской физики имеют более или менее косвенный характер. Самая прямолинейная проверка — эмпирическое воспроизведение акта рождения Метагалактики — выше человеческих возможностей.
Однако на путях создания объединенной теории поля и подступах к планковской физике возник в некотором смысле не физический, а математический подход. Его нельзя назвать совершенно новым, поскольку в иной модификации он появился вместе с рождением квантовой теории поля много десятилетий тому назад. Кратко его можно сформулировать в одной фразе: «Правильная теория не должна содержать бесконечностей». Этот тезис появился на заре создания квантовой электродинамики. Частично решение проблемы устранения бесконечностей было найдено в конце сороковых годов Р.Фейнманом, Ю.Швингером и С.Томонагой (так называемый метод перенормировок). Однако предложенный метод не устранял полностью все бесконечности, да и сами логические его основы оставляли желать лучшего. По меткому замечанию одного из создателей новой электродинамики — Р.Фейнмана, метод перенормировок — это способ «убирания мусора под ковер». За истекшие десятилетия продвижение в устранении бесконечностей в рамках квантовой электродинамики как изолированной теории было сравнительно невелико. Однако известный прогресс наметился в процессе создания единой теории взаимодействий, когда суммирование бесконечностей от разных взаимодействий привело к конечным результатам. Этот факт вселил надежду, что объединенная теория не должна содержать бесконечностей. конечность всех результатов — критерий истинности объединенной теории. Математическая форма этого критерия, с одной стороны, и относительно малый эмпирический фундамент планковской физики — с другой, стимулировали огромный поток работ, содержащих новые гипотезы и развитие новых методов математической физики. Выживаемость этих подходов может проверить только время. Здесь мы упомянем лишь некоторые из них, руководствуясь в первую очередь их доступностью и популярностью.
Дж. Уилер полагал, что на малых расстояниях должна существенно усложниться геометрия (топология) физического пространства. В общем виде такая гипотеза кажется весьма правдоподобной, однако конкретное ее воплощение, предложенное Уилером, по-видимому, неверно, поскольку оно не учитывает квантовых свойств элементарных частиц (в частности, их спинов) и разнообразие типов взаимодействий.
М.А.Марков предложил модифицировать уравнения ОТО таким образом, чтобы при M << M| модифицированные уравнения и
p уравнения ОТО совпадали, а при M>~ M| гравитационное
p взаимодействие исчезало и взаимодействие в уравнениях ОТО описывалось бы исключительно λ-членом, что соответствует вакуумному состоянию (см. разд.5 гл.3).
Б. де Витт и С.Хокинг предлагают сложную процедуру квантования с учетом различных возможных топологий в планковской области.
Но, пожалуй, наиболее популярной в настоящее время является гипотеза о том, что элементарным физико-геометрическим объектом является не точка, а струна. Реально сейчас говорят о так называемых суперструнах, однако, чтобы чрезмерно не усложнять изложение введением новых и весьма непривычных понятий, мы будем использовать образ обычной струны. Одной из главных причин, вызвавших появление этого образа, является известный экспериментальный факт — ненаблюдаемость кварков. В соответствии с кварковой гипотезой адроны состоят из кварков (см. Дополнение), которые обречены на пленение в пределах адронов. Рассмотрим для простоты бозон-систему, состоящую из двух кварков. Тогда, полагая, что силы, связывающие оба кварка, подобны натяжению струны, нетрудно объяснить невылетание кварков, допуская, что натяжение пропорционально расстоянию между кварками. В этом случае, чтобы раздвинуть кварки на расстояние l, затрачивается энергия, пропорциональная l. Следовательно, чтобы вынудить кварк покинуть адрон (что соответствует расстоянию l, равному бесконечности), нужно затратить бесконечную энергию, что и определяет невылетание кварков.
Весьма популярный в настоящее время образ суперструн аналогичен струнам, возникшим при описании сильного взаимодействия, с одним существенным различием. Суперструны — объекты с протяженностью порядка планковской длины, и они соответствуют объединению всех взаимодействий, включая гравитацию.
В рамках теории суперструн наметился известный прогресс в устранении бесконечностей в теории поля, были получены характеристики некоторых фундаментальных частиц и т. д.
Эти достижения вселяют надежду на то, что элементарным блоком в физической геометрии является точка, а одномерное образование — струна.
В струнной геометродинамике существует один замечательный факт. На начальном этапе развития струнной теории умели квантовать лишь в том случае, если струна вложена в пространство с размерностью N=26.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы — Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.