Геометрия, динамика, вселенная - [33]

Шрифт
Интервал

2 2 1 1 произведение пространств CP| x S| x S| (CP| — проективное двумерное комплексное пространство, эквивалентное 4-мерному действительному пространству) эквивалентно изотопическим пространствам, отражающим все три взаимодействия: сильное

1 (SU(3)), слабое (SU(2)) и электромагнитное (S|).

Итак, изотопическое пространство большого объединения интерпретируется 7-мерным компактным ограниченным по объему

2 2 1 пространством CP| x S| x S|. Здесь возникает естественный

2 2 1 вопрос, является ли компактный слой CP| x S| x S| единственным геометрическим отображением всех взаимодействий, кроме гравитационного. На этот вопрос следует отрицательный ответ, имеющий два аспекта: геометрический и физический.

Геометрический сводится к тому, что представление трех

2 2 1 взаимодействий в виде произведения CP| x S| x S| неоднозначно. Их можно представить, например, в виде произведения двух сфер разной размерности, но так, чтобы суммарная размерность была бы больше шести. Динамическая неоднозначность определяется опытом. Нет доказательств отсутствия сверхслабых (незарегистрированных до сих пор) взаимодействий, которые могут усложнить структуру слоев.

Таким образом, объединение всех четырех взаимодействий можно интерпретировать как расслоенное пространство с базой — 4-мерным пространством Римана и 7-мерным слоем чрезвычайно малых размеров. Эти размеры определяются по порядку величины из соображений размерности (величина, имеющая размерность длины и образованная из универсальных фундаментальных постоянных G, h и c) и значения константы объединенного взаимодействия. Оба подхода приводят к значению радиуса r|

c компактных компактных размерностей, равного планковским размерам (см.(54)). Разумеется, значение r| ~ l| ~ 10**-33

c p см — это лишь порядок величины и причем весьма грубый, компактных слоев. Нельзя, например, исключить, что r| ~ l|/ALPHA| ~ 10**-31 см. c p e

Возникает вопрос, можно ли (хотя бы в принципе оценить на опыте значение величины r|. Пока просматривается лишь

c единственный подход — обнаружение распада протона. Если это явление будет обнаружено, то можно утверждать, что приведенная геометрическая интерпретация верна при r| ~< 10**-30 см. В противном случае (r| >> 10**-30 см) c c теоретические оценки времени жизни протона становятся неправомочными. Непосредственное же измерение величины r|

c (например, на ускорителях), кажется нереалистичным. Сейчас исследовалась динамика вплоть до расстояний ~10**-16 см. Увеличить эти оценки на два-три порядка очень сложно, хотя принципиально и возможно. Путей же к исследованию на ускорителях свойств пространства на расстояниях << 10**-20 см сейчас не видно.

В этой связи возникает вопрос, полезен ли акцент на исследование «истинной» физической геометрии. Это важнейший вопрос. И краткий ответ на него таков. Да, нужно. Нужно потому, что, хотя в нашем распоряжении и нет прямых методов изучения компактных размерностей, существует много косвенных доводов в пользу того, что наблюдаемое физическое пространство (и в первую очередь его размерность) не есть «истинное» пространство Вселенной. Анализу этих аргументов посвящается гл.3 книги. Следовательно, есть серьезное основание полагать, что многомерное расслоенное пространство с компактными размерностями есть физическая реальность.

10. ПЛАНКОВСКАЯ ФИЗИКА. ЯВЛЯЕТСЯ ЛИ ТОЧКА ОСНОВНЫМ ЭЛЕМЕНТОМ ФИЗИЧЕСКОЙ ГЕОМЕТРИИ?

Сейчас, по всеобщему убеждению специалистов, при планковских параметрах l~l|, t~t|, M~M| формируется «истинная» физика в том смысле, что понимание происходящих процессов в этой области приведет к построению единой теории поля, квантовой теории гравитации, созданию теории происхождения Метагалактики (а может быть, и Вселенной) и количественному представлению физической геометрии. Меньше внимания (и, по мнению автора, незаслуженно) уделяется перспективам понимания природы фундаментальных физических констант.

Возникает видимое противоречие между нашими стремлениями завершить стройную конструкцию физики и наблюдательными возможностями, весьма скромными сравнительно с планковскими параметрами.

До сих пор физический эксперимент и теория дополняли друг друга. Однако идея об определяющем значении планковских параметров (которую мы назовем планковской физикой) обрекает нас, по крайней мере в настоящее время, на разрыв с этим принципом, на котором базировалась физика как эмпирическая наука.

Сейчас можно наметить лишь некоторые косвенные эмпирические подходы к планковским параметрам. Прежде всего следует отметить гипотетический распад протона. Если нам повезет и распад будет обнаружен, то мы приоткроем окно в мир энергий ~10**15 ГэВ и расстояний ~10**-29 см, что «всего» на три-четыре порядка отличается от планковских параметров. Если нам повезет вдвойне и окажется, что на характеристики распада протона влияет гравитация, то это может послужить эмпирическим базисом для изучения планковской физики.

Второй подход связан с уникальностью значений фундаментальных постоянных, в том числе и размерности пространства. Если вся физика формируется при планковских параметрах, то и хорошо изученные на опыте фундаментальные постоянные также должны быть связаны с этими параметрами.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы — Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.