Геометрия, динамика, вселенная - [32]
В основе теории Янга — Миллса лежат калибровочные соотношения
i g T(x) 1 ∂ a PSIG' = Ψ e||||||||, A' — > A + [aA] —- —--, (55)
g ∂ x
g=const, a=a(x).
Соотношения (55) определяют уравнения Янга — Миллса и очень похожи на условия (48), (49) калибровочной инвариантности в электродинамике. Однако есть и два существенных отличия: 1) в уравнениях (55) T(x) не число, а квадратная матрица и 2) в условие преобразования вектор-потенциала A входит дополнительный член [a,A] (наличие такого члена приводит к тому, что вектор A не только инвариантен относительно смещения, но и относительно вращения в изотопическом пространстве). Эти две, казалось бы, несущественные особенности радикально отличают уравнения Янга — Миллса от уравнений электродинамики.
Отметим в них то, что нам потребуется в дальнейшем. Во-первых, свойства матриц T существенно отличаются от свойств алгебраических чисел ALPHA. Числа характеризуются свойствами коммутативности (ALPHA|ALPHA| — ALPHA|ALPHA| =
1 2 2 1 0). Матрицы этим свойством не обладают (вообще говоря, T|T| — T|T| ≠ 0). 1 2 2 1
Инвариантность (55) функции Ψ требует введения уже
1 не одномерного пространства S|, а многомерного. Например, если матрица T двумерна, то соответствующее ей пространства
3 — трехмерная сфера S|. Соотношение между размерностями матрицы (n) и соответствующего ей пространства (N) определяется квантовомеханическим условием унитарности: N=n**2–1 (n≥2).
Для понимания дальнейшего целесообразно вначале ограничиться геометрической интерпретацией электрослабого взаимодействия.
Известно, что слабое взаимодействие характеризуется
± 0 тремя частицами-переносчиками — тяжелыми W||- и Z|-бозонами, образующими изотопический триплет. Изотопический триплет соответствует трем независимым направлениями вектора состояния в изотопическом пространстве. Поэтому для своего геометрического описания этот триплет требует трехмерную
3 сферу S|.
Электромагнитное взаимодействие (изотопический спин фотона
1 равен нулю) описывается сферой S|. Поэтому может показаться, что для совместного описания электрослабого
3 взаимодействия могут потребоваться и сфера S| и сфера
1 3 1 (окружность) S| (прямое произведение S| x S|). Однако ясно,
3 1 что сфера S| уже включает окружность S| — она состоит из бесконечной совокупности окружностей. Поэтому может опять возникнуть неверное впечатление, что для описания
3 электрослабого взаимодействия достаточно одной сферы S|, уже
1 включающей окружность S|. В действительности такая процедура слишком упрощена. Выше отмечалось, что окружность
1 (сфера S|) обладает среди сфер уникальной особенностью: лишь
1 в пределах сферы S| два последовательных вращения коммутативны, что отражается в разнице правил коммутации двух чисел и двух матриц. Суммарное вращение в пределах окружности не зависит от порядка, в котором вращается вектор состояния. Окончательный результат не зависит от того, в каком порядке пробегает вектор состояния два угла (ALPHA|,
1 ALPHA|) вдоль окружности. Суммарный угол в любом случае
2 равен ALPHA| + ALPHA| = ALPHA| + ALPHA|.
1 2 2 1
Совершенно иная ситуация возникает при вращении в
N сферах S| (N≥2) высших размерностей. В этом случае суммарное вращение зависит от порядка, что символически можно записать в форме ALPHA| + ALPHA| = ALPHA| + ALPHA|.
1 2 2 1 Подобное различие в свойствах коммутативности обуславливает кардинальную разницу между уравнениями электродинамики и
1 уравнениями Янга — Миллса. Поэтому включение окружности S| в
3 сферу S| неправомочно.
Однако вполне оправдана несколько иная операция:
1 выделения некоторой окружности S| и использования ее в
3 дальнейшем для построения сферы S|. Иначе говоря, разбиения
3 1 2 сферы S| на две: S| и S|. В стандартных обозначениях такое
3 1 2 разбиение имеет вид S| = S| + S|. Это произведение двух сфер и есть геометрическая интерпретация электрослабого взаимодействия. Наглядно ее можно попытаться представить как пространство Минковского (Римана), в каждой точке которого в определенном взаимоотношении «прикреплены» окружности и сферы одинакового радиуса.
По аналогии с геометрической интерпретацией электрослабого взаимодействия можно геометрически интерпретировать объединение сильного, слабого и электромагнитного взаимодействия (большое объединение).
Квантовая хромодинамика определяется группой SU(3), соответствующей 3-мерному комплексному пространству (матрица T 3-мерна). Учитывая квантовое условие унитарности (см. выше), размерность соответствующего пространства равна восьми. Эту размерность можно уменьшить до семи, используя свойства проективных пространств, когда одна из размерностей стягивается в точку. В проективной геометрии все точки, координаты которых пропорциональны (отличаются одним и тем же числовым множителем), принимаются за одну точку. Иначе говоря, все точки с координатами bx|, bx|…, bx| (b
1 2 N действительное число, принимающее различные значения) рассматриваются как одна. Это означает, что в рамках проективной геометрии прямая эквивалентна точке, что является отражением принципа двойственности. Поэтому проективное пространство с размерностью N в известном смысле эквивалентно обычному пространству с размерностью N+1, а

Стивен Хокинг — один из самых известных физиков современности. Ему принадлежало множество работ по теории черных дыр, квантовой космологии и теории относительности. Широкой общественности он был хорошо известен как блестящий популяризатор науки. Кроме того, британский ученый являл собой пример личного мужества, полстолетия сражаясь с ужасным недугом, парализовавшим все тело. Весной 2018 года выдающийся ученый навсегда покинул нашу планету, затерявшись где-то в бесконечных измерениях так любимого им многомирья Мультиверса.

Ученик великого Э. Ферми, сотрудник Ф. Жолио-Кюри, почетный член Итальянской академии деи Линчей Бруно Понтекорво родился в Италии, работал во Франции, США, Канаде, Англии, а большую часть своей жизни прожил в России. Бруно Понтекорво известен как один из ведущих физиков эпохи «холодной войны». В то время, как главы государств мечтали о мировом господстве, которое им подарит ядерное оружие, лучшие ученые всего мира боролись за «ядерное равновесие» и всеми возможными способами старались не разрывать прочные научные связи, помогавшие двигать науку вперед.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.

Блестящий популяризатор науки Дэвид Боданис умеет о самых сложных вещах писать увлекательно и просто. Его книги переведены на многие языки мира. Огромный интерес у российских читателей вызвала его «E=mc2». биография знаменитого эйнштейновского уравнения, выпущенная издательством «КоЛибри». «Электрическая Вселенная» — драматическая история электричества, в которой были свои победы и поражения, герои и негодяи. На страницах книги оживают истовый католик и открыватель электромагнетизма Майкл Фарадей, изобретатель и удачливый предприниматель Томас Эдисон, расчетливый делец Сэмюэл Морзе, благодаря которому появился телеграф, и один из создателей компьютеров, наивный мечтатель Алан Тьюринг.David BodanisELECTRIC UNIVERSEHow Electricity Switched on The Modern World© 2005 by David Bodanis.