Геометрия, динамика, вселенная - [23]

Шрифт
Интервал

R|| — 1/2 g|| R = (8 π G / c**4) T||, (38) юv юv юv

где R|| — тензор кривизны, R — скалярная кривизна, T||

юv юv тензор энергии-импульса:

T|| = (ε+p) u| u| — pg||, (39) юv юv

здесь ε — плотность энергии, p — давление, u — 4-скорость. Инвариантные характеристики кривизны R|| и R определяются

юv компонентами метрического тензора и его производными по времени. Мы не будем здесь выписывать эти довольно громоздкие выражения, которые можно найти в любой монографии, посвященной общей теории относительности.

Таким образом, расположение частиц материи (тензор T||)

юv определяет характеристики Риманова пространства (R||, R).

юv Однако это влияние взаимно. Движение частиц, в свою очередь, определяется геометрией. Частицы движутся в римановом пространстве (гравитационном поле) по кратчайшим расстояниям — геодезическим.

Сделаем некоторые комментарии к уравнению (38).

1. Уравнение Эйнштейна не является полной геометризацией динамики. В правой части находится тензор T||, отражающий свойства материи. Уравнение (38) лишь юv отражает тесную связь между геометрией и динамикой.

2. При нашем весьма упрощенном подходе к уравнению (38) мы, следуя Эйнштейну, опирались на весьма идеализированные мысленные эксперименты. Этот подход неоднократно подвергался критике и модифицировался. Однако почти всегда и при более рафинированном подходе получали уравнения гравитации в форме (38) или близкой к ней.

3. Уравнение (38) прекрасно согласуется со всеми (правда, немногочисленными) экспериментальными данными.

4. Вывод уравнений Эйнштейна на основе более строгих аргументов в известной мере бессмыслен. На поверку оказывается, что и эти строгие аргументы также содержат дополнительные постулаты. Этот факт отражает наше убеждение, что строгий «вывод» фундаментальных уравнений едва ли возможен. Об этом свидетельствует не только опыт вывода уравнений Эйнштейна, но и выводы основных уравнений электромагнитного поля (Максвелл) или уравнений электронов и позитронов (Дирак). В обоих случаях авторы исходили из аргументов, которые впоследствии критиковались. Однако уравнения Максвелла, Дирака и Эйнштейна — основа современной физики. Их справедливость была обусловлена в значительной степени красотой (симметрией), логичностью аргументации и гениальной интуицией авторов. Совершенствовать аргументацию фундаментальных уравнений физики — дело праведное, отрицать же их величие — верх нелепости. По нашему мнению, последняя оценка относится и к попыткам их канонизации — отрицанию ограниченности любой самой великой теории.

6. ОБЪЕДИНЕННАЯ ТЕОРИЯ ВЗАИМОДЕЙСТВИЙ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

Одна из основных (а быть может, и главная) задач современной физики — построение объединенной теории взаимодействий. В настоящее время достаточно хорошо изучены четыре фундаментальных взаимодействия: гравитационное, слабое, электромагнитное и сильное (см. Дополнение). Конечная цель заключается в том, чтобы написать единое уравнение, описывающее все четыре взаимодействия. Эта задача включает три элемента: 1) описание объединенного взаимодействия с помощью одной или нескольких констант взаимодействия, 2) включение в уравнение общих характеристик взаимодействий, 3) исключение из теории бесконечных величин, которые с неизбежностью возникают при использовании изолированных, необъединенных взаимодействий.

Рассмотрим эти составляющие объединенной теории более детально. На первый взгляд первая задача — описание разных взаимодействий с помощью единой константы — утопия. Константы различных взаимодействий имеют разные величины, отличающиеся друг от друга на много порядков.

Однако такое категорическое утверждение кардинально неверно. Дело в том, что константы всех взаимодействий зависят от передаваемого во время взаимодействия импульса массы m. При такой операции зависимость константы от передаваемой массы (импульса) существенно различна для разных взаимодействий. Константа ALHPA|, характеризующая

e электромагнитное взаимодействие, зависит от передаваемой массы чрезвычайно слабо, и мы будем в дальнейших рассуждениях этой зависимостью пренебрегать, полагая ALPHA| (m) = const.

e

Константа ALHPA| сильного взаимодействия, описываемого

s квантовой хромодинамикой, зависит от передаваемой массы приблизительно логарифмически. При условии m >> m|

p (m| ≈ 10**-24 г — масса протона) теоретическая зависимость p ALPHA| (m) имеет вид

s

ALPHA| ~ (ln m\m|)**-1 (40)

s p

Константы ALPHA| ALPHA| слабого и гравитационного

w g взаимодействий квадратично (~m**2) зависят от передаваемого импульса (массы).

Именно разные энергетические зависимости констант ALPHA (m) и определяют потенциальную возможность их совпадений при некоторых значениях m. Здесь следует подчеркнуть именно потенциальность возможности существования значения m, при котором произойдет пересечение трех или четырех констант при едином значении m. Подобная ситуация отличается от предсказаний относительно совпадения двух констант, когда вполне естественно ожидать пересечения двух кривых ALPHA| (m) и ALPHA| (m) в одной точке.

1 2

Таким образом, возможность объединения взаимодействий совпадения констант ALPHA при определенном значении m apriori не очевидна. Лишь расчеты зависимостей ALPHA (m) могут подтвердить или опровергнуть возможность объединения констант. Здесь речь идет именно о расчетах, поскольку (как мы увидим ниже) масштабы масс, при которых происходят объединения трех и четырех взаимодействий, намного превосходят возможности современных или даже будущих ускорителей.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы — Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.