Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [49]
Предположим, что пробный заряд +1 кулон проделал часть пути, находясь на расстоянии х, и мы перемещаем его еще на некоторый отрезок пути — dx. (Символ d употребляется вместо Δ в случае предельного перехода и обозначает бесконечно малую величину, а знак минус указывает на перемещение в направлении начала отсчета величины х, т. е. означает отрицательное приращение х.) Тогда работа на этом отрезке пути равна
Следовательно,
V = ПОЛНАЯ РАБОТА = СУММА ВСЕХ ЭЛЕМЕНТАРНЫХ РАБОТ НА ПУТИ ИЗ БЕСКОНЕЧНОСТИ ДО х = r
Работа, совершаемая внешней силой, переходит в потенциальную энергию заряда в электрическом поле. Записанный интеграл равен потенциальной энергии, приходящейся на единицу заряда.
а) Произведите интегрирование, помня, что
— постоянная, равная 9,0∙10>9, a Q — заряд центрального ядра — тоже постоянная величина.б) Решение задачи а) дает величину V на расстоянии r от точечного заряда Q. Оно дает, кроме того, величину V на поверхности заряженного шара радиуса r, несущего заряд Q. Почему?
в) Исходя из б), оцените потенциал металлического шара величиной с бейсбольный мяч (r ~= 0,05 м), несущего заряд 1 микрокулон (10>-6 кулон). Потенциал шара выражается в вольтах.
г) В соответствии с простыми моделями атома «радиус» атома водорода — то расстояние от ядра, на котором электрон проводит большую часть времени, — близок к 0,5 А° (= 0,5∙10>-10 м). Заряд электрона, равен —1,6∙10>-19 кулон; ядро, находящееся в центре, обладает таким же по абсолютной величине положительным зарядом.
1) Вычислите величину V, обусловленную зарядом ядра, равным +1,6∙20>-19 кулон, на «наружной поверхности» атома (для атома водорода).
2) Вычислите потенциальную энергию электрона в джоулях там же, умножив V на заряд электрона, равный —1,6∙20>-19 кулон.
Затем разделите полученную величину на заряд электрона, чтобы выразить потенциальную энергию в электронвольтах. (Обратите внимание на то, что эта потенциальная энергия отрицательна. В модели Бора электрон обладает, кроме того, кинетической энергией, которая численно ровно вдвое меньше потенциальной и, конечно, положительна. Таким образом, половина найденного здесь вами значения указывает энергию, которую необходимо затратить, чтобы выбить электрон из атома и превратить атом в ион. Опыты по бомбардировке атомов водорода показывают, что для атома водорода эта энергия равна 13,6 электронвольт.)
3) α-частицами, несущими заряд +2е, обстреливают атомы золота. Изредка какая-нибудь α-частица отлетает строго назад. В этом случае мы представляем себе, что α-частица движется к атому золота, преодолевая силу отталкивания со стороны большого положительного заряда ядра атома, пока не потеряет всю свою кинетическую энергию, которая переходит в потенциальную энергию частицы в электростатическом поле. После этого α-частица летит назад. Ив приведенных ниже данных (все они взяты из опытов) оцените, на какое самое близкое расстояние α-частица приближается к ядру атома золота. Сравните свой ответ с традиционным «размером» атома (радиус порядка 0,5∙10>-10 м).
ОПЫТНЫЕ ДАННЫЕ, α-частица, вылетающая из ядра атома радия, имеет:
— скорость v ~= 1,6∙10>7 м/сек,
— массу m ~= 6,6∙10->27 кг,
— заряд 2e = + 2∙1,6∙10>-19 кулон.
Ядро атома золота значительно более массивное, а заряд его равен 79е = 79∙1,6∙10>-19 кулон.
Глава 34. Магнетизм. Опыт и теория
Отличительная особенность магнитов — их пол… Тот сорт магнита, что был найден в Трое, имеет черный цвет и женский пол и, следовательно, лишен притягивающей силы.
Плиний, «Естественная история» ~77 г. н. э.
Электрические поля ускоряют и отклоняют пучки электронов, но их оказывается недостаточно, чтобы узнать заряд, массу и скорость движущихся электронов или заряженных атомов. Для этого необходимы еще и магнитные поля. Так что прежде, чем начать изучение атомов, мы должны вкратце познакомиться с магнетизмом. Цель настоящей главы показать, что представляют собой магнитные поля и как они используются для изучения атомов. В ней дается также простая теория магнетизма, которая может служить примером очень хорошей теории.
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.